The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market

By David Autor and David Dorn, AER 2013

Presented by Julian Kozlowski

Sargent Reading Group

March 10, 2015
Wage Polarization. Cannot be accounted by the canonical model of SBTC.
Low-skill Occupations: Rise of Services

- Low-skill labor share: ↑ 30% in service, ↓ in non-service.
- This paper: SBTC + Services ⇒ Job Polarization.
Simple static model.

2 Sectors:

- Goods
- Services
Simple static model.

2 Sectors:
- Goods
- Services

3 Tasks:
- Manual: low-skill labor L_m.
- Routine: low-skill labor L_r and computers K.
- Abstract: high-skill labor L_a.
\section*{Model}

\begin{itemize}
\item Simple static model.
\item 2 Sectors:
 \begin{itemize}
 \item Goods: \(Y_g = L_a^{1-\beta} [(L_r)^\mu + (K)^\mu]^\beta/\mu \).
 \item Services: \(Y_s = L_m \).
 \end{itemize}
\item 3 Tasks:
 \begin{itemize}
 \item Manual: low-skill labor \(L_m \).
 \item Routine: low-skill labor \(L_r \) and computers \(K \).
 \item Abstract: high-skill labor \(L_a \).
 \end{itemize}
\end{itemize}

\(\beta \): routine-task intensity.
\(\mu \): \(L_r \) and \(K \) substitution.
Model

- Simple static model.
- **2 Sectors:**
 - **Goods:** \(Y_g = L_a^{1-\beta} \left[(L_r)^\mu + (K)^\mu \right]^{\beta/\mu} \).
 - **Services:** \(Y_s = L_m \).
- **3 Tasks:**
 - Manual: low-skill labor \(L_m \).
 - Routine: low-skill labor \(L_r \) and computers \(K \).
 - Abstract: high-skill labor \(L_a \).
- **Exogenous Labor Supply:**
 - Low-skill: \(U = L_m + L_r \).
 - Homogeneous for \(L_m \).
 - Heterogeneous for \(L_r \).
 - High-skill: \(H = L_a \).
Simple static model.

2 Sectors:

Goods : \(Y_g = L_a^{1-\beta} \left[(L_r)^\mu + (K)^\mu \right]^{\beta/\mu}. \)

Services : \(Y_s = L_m. \)

3 Tasks:

- Manual: low-skill labor \(L_m. \)
- Routine: low-skill labor \(L_r \) and computers \(K. \)
- Abstract: high-skill labor \(L_a. \)

Exogenous Labor Supply:

- Low-skill: \(U = L_m + L_r. \)
 Homogeneous for \(L_m. \)
 Heterogeneous for \(L_r. \)
- High-skill: \(H = L_a. \)

SBTC: Endogenous \(K \) supply, \(p_k(t) = e^{\delta(1-t)}. \)
Model

- Simple static model.
- 2 Sectors:
 - Goods: \(Y_g = L_a^{1-\beta} \left[(L_r)^\mu + (K)^\mu \right]^{\beta/\mu} \).
 - Services: \(Y_s = L_m \).
- 3 Tasks:
 - Manual: low-skill labor \(L_m \).
 - Routine: low-skill labor \(L_r \) and computers \(K \).
 - Abstract: high-skill labor \(L_a \).
- Exogenous Labor Supply:
 - Low-skill: \(U = L_m + L_r \).
 - Homogeneous for \(L_m \).
 - Heterogeneous for \(L_r \).
 - High-skill: \(H = L_a \).
- SBTC: Endogenous \(K \) supply, \(p_k(t) = e^{\delta (1-t)} \).
- Preferences: \(u = \left(c_s^\rho + c_g^\rho \right)^{1/\rho} \).
Model

- Simple static model.
- 2 Sectors:
 - Goods: \(Y_g = L_a^{1-\beta} [(L_r)^\mu + (K)^\mu]^{\beta/\mu} \).
 - Services: \(Y_s = L_m \).
- 3 Tasks:
 - Manual: low-skill labor \(L_m \).
 - Routine: low-skill labor \(L_r \) and computers \(K \).
 - Abstract: high-skill labor \(L_a \).
- Exogenous Labor Supply:
 - Low-skill: \(U = L_m + L_r \).
 - Homogeneous for \(L_m \).
 - Heterogeneous for \(L_r \).
 - High-skill: \(H = L_a \).
- SBTC: Endogenous \(K \) supply, \(p_k(t) = e^{\delta(1-t)} \).
- Preferences: \(u = \left(c_s^\rho + c_g^\rho \right)^{1/\rho} \).

Missing: endogenous labor supply, heterogeneous households, endogenous SBTC, dynamic model, etc.
Employment Polarization: U reallocates from L_r toward L_m.

Wage Polarization: $\downarrow \frac{w_r}{w_m}$ and constant $\frac{w_a}{w_m}$.
Job Polarization

- Employment Polarization: U reallocates from L_r toward L_m.
- Wage Polarization: $\downarrow \frac{w_r}{w_m}$ and constant $\frac{w_a}{w_m}$.

SBTC

- If the elasticity of substitution between K and L_r exceeds the elasticity of substitution between c_g and c_s then:
 Shares: reallocates U labor from L_r toward L_m.
 Wages: $\downarrow \frac{w_r}{w_m}$.

- If c_g and c_s are gross complements, w_m grow at least as rapidly as w_a.

Mechanism: $\downarrow p_k \rightarrow$ substitutes L_r by $K \rightarrow \uparrow L_m$ and $\downarrow \frac{w_r}{w_m}$.
If services and goods are complements: w_m and w_a grow at the same rate.
Extend to a spatial model to get testable implications.

- J sectors, differentiated by goods c_j and routine-task intensity β_j.
- Trade: goods and high-skill workers.
- Nontradable: services and low-skill workers.
Extend to a spatial model to get testable implications.

- J sectors, differentiated by goods c_j and routine-task intensity β_j.
- Trade: goods and high-skill workers.
- Nontradable: services and low-skill workers.

SBTC

Regions with larger β_j will experience:

1. Greater adoption of information technology and displacement of L_r.
2. *Employment polarization*: Greater reallocation of low-skill workers from L_r to L_s.
3. *Wage polarization*: Larger increases in w_a and w_m.
Empirical Results

- Routine Employment share:
 1. Create a measure of routine task-intensity for each occupation in DOT.
 2. Routine-intensive occupations: top 1/3 of the index.
 3. Calculate the routine employment share for each CZ.
Empirical Results

- Routine Employment share:
 1. Create a measure of routine task-intensity for each occupation in DOT.
 2. Routine-intensive occupations: top 1/3 of the index.
 3. Calculate the routine employment share for each CZ.

Job polarization in routine-intensive CZ

Commuting zones split on mean routine share in 1980

Skill percentile (ranked by 1980 occupational mean wage)
ΔSVC_{j}^{1980–2005} = -0.096 + 0.495 \times RSH_{j,1980} + e_{j}, t = 4.3, n = 64, R^{2} = 0.23
Routine-intensive CZ experienced:

acers

\uparrow Computer adoption.

\downarrow Employment and wages in routine-intensive occupations.

\uparrow Service occupation.

\uparrow Employment and earnings of noncollege workers in non-routine intensive occupations.

\uparrow Employment polarization and wage polarization.
1. Rising employment and wages in service occupations may account for the job polarization.

2. *Mechanism:* SBTC substituted low-skill workers performing routine tasks. Low-skill workers reallocated their labor to service occupations (which demand increases due to the complementarity between goods and services).

3. Routine-intensive CZ exhibited greater job polarization.
POLARIZATION IN EMPLOYMENT WAGES

Change in real log hourly wage vs. Skill percentile (ranked by 1980 occupational mean wage)