Bargaining and Reputation
Abreu and Gul – 2000

Francisco Roldán

Sargent Reading Group
October 2017

New York University
• Two players bargain over a pie of size 1.
 • Take turns to make offers
 • Consider the continuous-time limit

• Complete information, alternating offers (Rubinstein, 1982)

\[1 - v^1 = \delta_2 v^2 \quad 1 - v^2 = \delta_1 v^1 \]

• This paper: uncertainty about strategic posture
• Two players bargain over a pie of size 1.
 • Take turns to make offers
 • Consider the continuous-time limit

• Complete information, alternating offers (Rubinstein, 1982)

\[v^1(\delta_1, \delta_2) = \frac{1 - \delta_2}{1 - \delta_1 \delta_2} \]

• This paper: uncertainty about strategic posture
Types

Perturb the Rubinstein game

- Player i is *behavioral* with probability z^i
- With cond. probability $\pi^i(\alpha)$, i is type α
 - Type α characterized by its strategy
 - Demands α, accepts offers $\geq \alpha$

- With probability $1 - z^i$, i is rational and *strategic*.

Two questions

- Does the *rational* type *pretend* to be crazy?
- Does it matter (in the limit as $z \to 0$)?
Types

Perturb the Rubinstein game

• Player i is \textit{behavioral} with probability z^i
• With cond. probability $\pi^i(\alpha)$, i is type α
 • Type α characterized by its strategy
 • Demands α, accepts offers $\geq \alpha$

• With probability $1 - z^i$, i is rational and \textit{strategic}.

Two questions

• Does the \textit{rational} type pretend to be crazy?
• Does it matter (in the limit as $z \to 0$)?
Types

Perturb the Rubinstein game

- Player i is *behavioral* with probability z^i
- With cond. probability $\pi^i(\alpha)$, i is type α
 - Type α characterized by its strategy
 - Demands α, accepts offers $\geq \alpha$

- With probability $1 - z^i$, i is rational and *strategic*.

Two questions

- Does the *rational* type *pretend* to be crazy?
- Does it matter (in the limit as $z \to 0$)?
Perturb the Rubinstein game

- Player i is *behavioral* with probability z^i
- With cond. probability $\pi^i(\alpha)$, i is type α
 - Type α characterized by its strategy
 - Demands α, accepts offers $\geq \alpha$
- With probability $1 - z^i$, i is rational and *strategic*.

Two questions

- Does the *rational* type *pretend* to be crazy? ✓
- Does it matter (in the limit as $z \to 0$)? ✓
• Time 0
 • P1 chooses a demand α_1
 \implies P1 is either rational or behavioral of type α_1
 • P2 can accept or demand $\alpha_2 > 1 - \alpha_1$
 Maybe P2 is type α_2, maybe strategically
 • P1 can concede or reject

• Time $t > 0$
 • Protocol calls for i to make demands at certain (frequent) times
 • Changing the demand = revealing rationality
 • State variable: posterior of crazy
 • Revealing rationality \preceq conceding
• Time 0
 • P1 chooses a demand α^1
 \implies P1 is either rational or behavioral of type α^1
 • P2 can accept or demand $\alpha^2 > 1 - \alpha^1$
 Maybe P2 is type α^2, maybe strategically
 • P1 can concede or reject

• Time $t > 0$
 • Protocol calls for i to make demands at certain (frequent) times
 • Changing the demand = revealing rationality
 • State variable: posterior of crazy
 • Revealing rationality \preceq conceding
• **Time 0**

 • P1 chooses a demand α^1

 \implies P1 is either rational or behavioral of type α^1

 • P2 can accept or demand $\alpha^2 > 1 - \alpha^1$

 Maybe P2 is type α^2, maybe *strategically*

 • P1 can concede or reject

• **Time $t > 0$**

 • Protocol calls for i to make demands at certain (frequent) times

 • Changing the demand = *revealing* rationality

 • State variable: posterior of crazy

 • Revealing rationality \preceq conceding
• Time 0
 • P1 chooses a demand α^1
 \implies P1 is either rational or behavioral of type α^1
 • P2 can accept or demand $\alpha^2 > 1 - \alpha^1$
 Maybe P2 is type α^2, maybe strategically
 • P1 can concede or reject

• Time $t > 0$
 • Protocol calls for i to make demands at certain (frequent) times
 • Changing the demand = **revealing** rationality
 • State variable: posterior of crazy
 • Revealing rationality \leq conceding
• Time 0
 • P1 chooses a demand α^1
 \implies P1 is either rational or behavioral of type α^1
 • P2 can accept or demand $\alpha^2 > 1 - \alpha^1$
 Maybe P2 is type α^2, maybe strategically
 • P1 can concede or reject

• Time $t > 0$
 • Protocol calls for i to make demands at certain (frequent) times
 • Changing the demand = revealing rationality
 • State variable: posterior of crazy
 • Revealing rationality \preceq conceding
• Player i chooses
 • A (distribution over) type to mimic α^i
 • A probability of concession before time t, $F^i_{\alpha^1, \alpha^2}(t)$
 • $F^i_{\alpha^1, \alpha^2}(0) > 0$ means concession after initial demands are made

• Subgame after initial demands: war of attrition / chicken
• Indifference conditions \sim mixed strategies:
 1. At most one player concedes at time 0
 2. Player i concedes with constant hazard rate

$$\lambda^i = r^i \frac{1 - \alpha^i}{\alpha^i - (1 - \alpha^i)}$$

3. At some $T^0 < \infty$ the posterior of crazy reaches 1 for both players
• Player i chooses
 • A (distribution over) type to mimic α^i
 • A probability of concession before time t, $F_{\alpha^1, \alpha^2}(t)$
 • $F_{\alpha^1, \alpha^2}(0) > 0$ means concession after initial demands are made

• Subgame after initial demands: war of attrition / chicken

• Indifference conditions \sim mixed strategies:
 1. At most one player concedes at time 0
 2. Player i concedes with constant hazard rate

\[\lambda^i = r^i \frac{1 - \alpha^i}{\alpha^i - (1 - \alpha^i)} \]

3. At some $T^0 < \infty$ the posterior of crazy reaches 1 for both players
Concessions

Concession rate

\[\lambda^i = r^i \frac{1 - \alpha^i}{\alpha^i - (1 - \alpha^i)} \]

- Concede faster against more **impatient** opponents
- Concede more slowly against more **greedy** opponents
- Concede slowly when demand is high

- ‘Time to exhaustion’ \(T^i \):

 \[1 - z^i = F^i_{\alpha^i, \alpha^2}(T^i) = 1 - e^{-z^i} \]

- If \(T^i > T^j \), \(i \) has to make an initial concession

 \- Low \(T^i \) is **strength** in the war of attrition
Concessions

Concession rate

\[\lambda^i = r^i \frac{1 - \alpha^i}{\alpha^i - (1 - \alpha^i)} \]

- Concede faster against more **impatient** opponents
- Concede more slowly against more **greedy** opponents
- Concede slowly when demand is high

- ‘Time to exhaustion’ \(T^i \):

\[1 - z^i = F^{i, 1, 2}(T^i) = 1 - e^{-\lambda^i T^i} \]

- If \(T^i > T^j \), \(i \) has to make an initial concession
 - Low \(T^i \) is **strength** in the war of attrition
Concessions

Concession rate

\[\lambda^i = r^i \frac{1 - \alpha^i}{\alpha^i - (1 - \alpha^i)} \]

- Concede faster against more impatient opponents
- Concede more slowly against more greedy opponents
- Concede slowly when demand is high

‘Time to exhaustion’ \(T^i \):

\[1 - z^i = F_{\alpha^1, \alpha^2}(T^i) = 1 - e^{-\lambda^i T^i} \]

- If \(T^i > T^j \), \(i \) has to make an initial concession
 - Low \(T^i \) is strength in the war of attrition
Concessions

Graph showing two curves labeled F_1 and F_2. The x-axis ranges from 0 to 300, and the y-axis ranges from 0.0 to 0.8. The curves ascend as the x-values increase, with F_2 generally higher than F_1. The graph includes grid lines and a dotted vertical line at 200 on the x-axis.
Suppose P1 demands α^1 and P2 does not concede

$$T^2 = -\frac{1}{\lambda^2} \log \frac{z^2 \pi^2(\alpha^2)}{z^2 \pi^2(\alpha^2) + (1 - z^2) \mu_{\alpha^1}(\alpha^2)}$$

- Expected payoff: $\alpha^2 \times q^1 + (1 - \alpha^1) \times (1 - q^1)$
 - q^1 is the probability of immediate concession by P1
 - q^1 decreasing in T^2, so decreasing in α^2

- Indifference across mimicked types pins down μ^2
Suppose P1 demands α^1 and P2 does **not** concede

$$T^2 = -\frac{1}{\lambda^2} \log \frac{z^2 \pi^2(\alpha^2)}{z^2 \pi^2(\alpha^2) + (1-z^2)\mu^2_{\alpha^1}(\alpha^2)}$$

- Expected payoff: $\alpha^2 \times q^1 + (1 - \alpha^1) \times (1 - q^1)$
 - q^1 is the probability of **immediate** concession by P1
 - q^1 decreasing in T^2, so decreasing in α^2
- Indifference **across** mimicked types pins down μ^2
Let $z \to 0$ with $\lim \frac{z_1}{z_2} \in (0, 1)$.

- i can guarantee any payoff below

$$v^i = \frac{r^j}{r^1 + r^2}$$

- $\lambda^i > \lambda^j$ makes j concede immediately wpa1

- $\lambda^1 > \lambda^2$ iff $r^1(1 - \alpha^2) < r^2(1 - \alpha^1)$
 - But for $\alpha^1 \leq v^1$, “$>$” means that $\alpha^2 < 1 - v^1$
Concluding Remarks

- Theory of strategic postures in bargaining
- Perturbation gives an incentive to mimic the crazy types
 - Indifference conditions pin down play
 - Indifference conditions pin down distribution of mimicked types
- In the limit
 - Outcome robust to bargaining protocol
 - Only mimics the Rubinstein outcome (if allowed)