Bargaining and Reputation

Abreu and Gul – 2000

Francisco Roldán

Sargent Reading Group October 2017

New York University

- Two players bargain over a pie of size 1.
 - Take **turns** to make offers
 - Consider the continuous-time limit
- Complete information, alternating offers (Rubinstein, 1982)

$$1 - v^1 = \delta_2 v^2$$
 $1 - v^2 = \delta_1 v^1$

• This paper: uncertainty about strategic posture

- Two players bargain over a pie of size 1.
 - Take **turns** to make offers
 - Consider the continuous-time limit
- Complete information, alternating offers (Rubinstein, 1982)

$$v^{1}(\delta_{1},\delta_{2})=\frac{1-\delta_{2}}{1-\delta_{1}\delta_{2}}$$

• This paper: uncertainty about strategic posture

- Player *i* is *behavioral* with probability *zⁱ*
- With cond. probability $\pi^i(\alpha)$, *i* is type α
 - Type α characterized by its strategy
 - Demands α , accepts offers $\geq \alpha$
- With probability $1 z^i$, *i* is rational and **strategic**.

- Does the *rational* type pretend to be crazy?
- Does it matter (in the limit as $z \rightarrow 0$)?

- Player *i* is *behavioral* with probability *zⁱ*
- With cond. probability $\pi^i(\alpha)$, *i* is type α
 - Type α characterized by its strategy
 - Demands α , accepts offers $\geq \alpha$
- With probability $1 z^i$, *i* is rational and *strategic*.

- Does the *rational* type pretend to be crazy?
- Does it matter (in the limit as $z \rightarrow 0$)?

- Player *i* is *behavioral* with probability *zⁱ*
- With cond. probability $\pi^i(\alpha)$, *i* is type α
 - Type α characterized by its strategy
 - Demands α , accepts offers $\geq \alpha$
- With probability $1 z^i$, *i* is rational and *strategic*.

- Does the *rational* type pretend to be crazy?
- Does it matter (in the limit as $z \rightarrow 0$)?

- Player *i* is *behavioral* with probability *zⁱ*
- With cond. probability $\pi^i(\alpha)$, *i* is type α
 - Type α characterized by its strategy
 - Demands $\alpha \text{,}$ accepts offers $\geq \alpha$
- With probability $1 z^i$, *i* is rational and *strategic*.

- Does the rational type pretend to be crazy? \checkmark
- Does it matter (in the limit as $z \rightarrow 0$)? \checkmark

• Time 0

- + P1 chooses a demand α^1
 - \implies P1 is either rational or behavioral of type α^1
- P2 can accept or demand $\alpha^2 > 1 \alpha^1$ Maybe P2 is type α^2 , maybe strategically
- P1 can concede or reject
- Time t > 0
 - Protocol calls for *i* to make demands at certain (frequent) times
 - · Changing the demand = revealing rationality
 - State variable: posterior of crazy
 - Revealing rationality \lesssim conceding

- Time 0
 - + P1 chooses a demand α^1
 - \implies P1 is either rational or behavioral of type α^1
 - P2 can accept or demand $\alpha^2 > 1 \alpha^1$ Maybe P2 is type α^2 , maybe strategically
 - P1 can concede or reject
- Time *t* > 0
 - Protocol calls for *i* to make demands at certain (frequent) times
 - · Changing the demand = revealing rationality
 - State variable: posterior of crazy
 - · Revealing rationality \lesssim conceding

- Time 0
 - + P1 chooses a demand α^1
 - \implies P1 is either rational or behavioral of type α^1
 - P2 can accept or demand $\alpha^2 > 1 \alpha^1$ Maybe P2 is type α^2 , maybe strategically
 - P1 can concede or reject
- Time *t* > 0
 - Protocol calls for *i* to make demands at certain (frequent) times
 - Changing the demand = revealing rationality
 - State variable: posterior of crazy
 - Revealing rationality \lesssim conceding

- Time 0
 - + P1 chooses a demand α^1
 - \implies P1 is either rational or behavioral of type α^1
 - P2 can accept or demand $\alpha^2 > 1 \alpha^1$ Maybe P2 is type α^2 , maybe strategically
 - P1 can concede or reject
- Time t > 0
 - Protocol calls for *i* to make demands at certain (frequent) times
 - Changing the demand = revealing rationality
 - State variable: posterior of crazy
 - \cdot Revealing rationality \lesssim conceding

- Time 0
 - + P1 chooses a demand α^1
 - \implies P1 is either rational or behavioral of type α^1
 - P2 can accept or demand $\alpha^2 > 1 \alpha^1$ Maybe P2 is type α^2 , maybe strategically
 - P1 can concede or reject
- Time t > 0
 - Protocol calls for *i* to make demands at certain (frequent) times
 - Changing the demand = revealing rationality
 - State variable: posterior of crazy
 - Revealing rationality \lesssim conceding

STRATEGIES AND EQUILIBRIUM

- Player *i* chooses
 - A (distribution over) type to mimic α^i
 - A probability of concession before time t, $F^{i}_{\alpha^{1},\alpha^{2}}(t)$
 - $\cdot F^i_{\alpha^1,\alpha^2}(0) > 0$ means concession after initial demands are made
- Subgame after initial demands: war of attrition / chicken
- \cdot Indifference conditions \sim mixed strategies:
 - 1. At most one player concedes at time 0
 - 2. Player *i* concedes with constant hazard rate

$$\lambda^{i} = r^{j} \frac{1 - \alpha^{i}}{\alpha^{j} - (1 - \alpha^{i})}$$

3. At some $T^0 < \infty$ the posterior of crazy reaches 1 for *both* players

STRATEGIES AND EQUILIBRIUM

- Player *i* chooses
 - A (distribution over) type to mimic α^i
 - A probability of concession before time $t, F^i_{\alpha^1,\alpha^2}(t)$
 - $\cdot F^i_{\alpha^1,\alpha^2}(0) > 0$ means concession after initial demands are made
- Subgame after initial demands: war of attrition / chicken
- Indifference conditions \sim mixed strategies:
 - 1. At most one player concedes at time 0
 - 2. Player *i* concedes with constant hazard rate

$$\lambda^{i} = r^{j} \frac{1 - \alpha^{i}}{\alpha^{j} - (1 - \alpha^{i})}$$

3. At some $T^0 < \infty$ the posterior of crazy reaches 1 for *both* players

Concession rate

$$\lambda^{i} = r^{j} \frac{1 - \alpha^{i}}{\alpha^{j} - (1 - \alpha^{i})}$$

- Concede faster against more impatient opponents
- Concede more slowly against more greedy opponents
- Concede slowly when demand is high
- 'Time to exhaustion' *T*ⁱ:

 $1 - z^i = F^i_{\alpha^1, \alpha^2}(T^i) = 1 - e^{-\lambda^{i_T}}$

- If $T^i > T^j$, *i* has to make an initial concession
 - Low T^i is **strength** in the war of attrition

Concession rate

$$\lambda^{i} = r^{j} \frac{1 - \alpha^{i}}{\alpha^{j} - (1 - \alpha^{i})}$$

- Concede faster against more impatient opponents
- Concede more slowly against more greedy opponents
- Concede slowly when demand is high
- 'Time to exhaustion' T^i :

$$1 - z^{i} = F^{i}_{\alpha^{1},\alpha^{2}}(T^{i}) = 1 - e^{-\lambda^{i}T^{i}}$$

- If $T^i > T^j$, *i* has to make an initial concession
 - Low T^i is **strength** in the war of attrition

Concession rate

$$\lambda^{i} = r^{j} \frac{1 - \alpha^{i}}{\alpha^{j} - (1 - \alpha^{i})}$$

- Concede faster against more impatient opponents
- Concede more slowly against more greedy opponents
- · Concede slowly when demand is high
- 'Time to exhaustion' T^i :

$$1 - z^{i} = F^{i}_{\alpha^{1},\alpha^{2}}(T^{i}) = 1 - e^{-\lambda^{i}T^{i}}$$

- If $T^i > T^j$, *i* has to make an initial concession
 - Low T^i is **strength** in the war of attrition

Suppose P1 demands α^1 and P2 does not concede

$$T^{2} = -\frac{1}{\lambda^{2}} \log \frac{z^{2} \pi^{2}(\alpha^{2})}{z^{2} \pi^{2}(\alpha^{2}) + (1 - z^{2})\mu_{\alpha^{1}}^{2}(\alpha^{2})}$$

- Expected payoff: $\alpha^2 \times q^1 + (1 \alpha^1) \times (1 q^1)$
 - q^1 is the probability of immediate concession by P1
 - q^1 decreasing in T^2 , so decreasing in α^2
- Indifference **across** mimicked types pins down μ^2

Suppose P1 demands α^1 and P2 does not concede

$$T^{2} = -\frac{1}{\lambda^{2}} \log \frac{z^{2} \pi^{2}(\alpha^{2})}{z^{2} \pi^{2}(\alpha^{2}) + (1 - z^{2})\mu_{\alpha^{1}}^{2}(\alpha^{2})}$$

- Expected payoff: $\alpha^2 \times q^1 + (1 \alpha^1) \times (1 q^1)$
 - q^1 is the probability of immediate concession by P1
 - q^1 decreasing in T^2 , so decreasing in α^2
- Indifference **across** mimicked types pins down μ^2

Let $z \to 0$ with $\lim \frac{z_1}{z_2} \in (0, 1)$.

• *i* can guarantee any payoff below

$$\underline{v}^i = \frac{r^j}{r^1 + r^2}$$

• $\lambda^{i} > \lambda^{j}$ makes *j* concede **immediately** wpa1

•
$$\lambda^1 > \lambda^2$$
 iff $r^1(1 - \alpha^2) < r^2(1 - \alpha^1)$

+ But for $\alpha^1 \leq \underline{v}^1$, " \geq " means that $\alpha^2 < 1 - \underline{v}^1$

- Theory of strategic postures in bargaining
- Perturbation gives an incentive to mimic the crazy types
 - Indifference conditions pin down play
 - Indifference conditions pin down distribution of mimicked types
- \cdot In the limit
 - Outcome **robust** to bargaining protocol
 - Only mimics the Rubinstein outcome (if allowed)