Trading in Decentralized Markets with Adverse Selection
Camargo and Lester, *JET* 2014

Presenter: Nic Kozeniauskas

23rd September 2014
INTRODUCTION

Questions this paper addresses

▶ How do asset markets recover from a freeze (low trade volume)?
▶ What are the dynamics for prices and trading volumes during the recovery?
▶ Did US government subsidization of asset purchases in 2009 help to unfreeze asset markets?

Main contributions

▶ Showing how a frozen asset market can thaw endogenously.
▶ Providing predictions for the duration and dynamics of an asset market’s recovery from a freeze.
▶ Showing that an asset subsidy program may worsen a freeze.
Environment

- **Time**: discrete and infinite.
- **Agents**: equal masses of infinitely lived buyers and sellers.
- **Assets**:
 - each seller is endowed with a single indivisible asset
 - an asset is either high \((H)\) or low \((L)\) quality
 - \(q_t\): fraction of \(H\) assets in period \(t\)
 - Type \(j\) asset: gives utility \(u_j\) to buyer and disutility \(c_j\) to seller when traded
- **Assumptions**
 - Always gains from trade: \(u_j > c_j\ \forall j\)
 - Sellers of \(H\) assets won’t accept prices for \(L\) assets: \(c_H > u_L\)
 - Gains from trade are larger for \(H\) assets: \(u_H - c_H > u_L\)
ENVIRONMENT

- **Discount factors:** Each agent draws a new discount factor δ each period from $F(\delta)$ with support $[\underline{\delta}, \bar{\delta}] \in [0, 1)$

- **Matching and trade:**
 - Each buyer is randomly matched with a seller each period
 - Buyer makes a take-it-or-leave-it offer
 - If seller accepts agents realize their utilities and exit
STRATEGIES

Sellers

- The strategy for a seller with asset type \(j \) is a sequence of accept/reject rules \(a_j = \{ a^j_t \}_{t=0}^\infty \).
 \[
 a^j_t : [\delta, \delta] \times [0, u_H] \rightarrow \{0, 1\}
 \]
- \(V^j_t \): value for seller with \(j \) asset at the start of \(t \) (\(\delta \) unknown)
- Optimal rule: \(a^j_t(\delta, p) = 1 \) if \(p - c_j \geq \delta V^j_{t+1} \)

Buyers

- A buyer’s strategy is a sequence of price offers \(p = \{ p_t \}_{t=0}^\infty \).
 \[
 p_t : [\delta, \delta] \rightarrow [0, u_H]
 \]
- \(V^B_t \): buyer’s value at the start of period \(t \)
- Buyer’s problem: for all \(\delta \in [\delta, \delta] \)
 \[
 \max q_t \left[\Pr\{ a^H_t(\delta', p) = 1 \} (u_H - p) + (1 - \Pr\{ a^H_t(\delta', p) = 1 \}) \delta V^B_{t+1} \right] \\
 + (1 - q_t) \left[\Pr\{ a^L_t(\delta', p) = 1 \} (u_L - p) + (1 - \Pr\{ a^L_t(\delta', p) = 1 \}) \delta V^B_{t+1} \right]
 \]
Equilibrium Definition

Preliminaries

- **Focus on symmetric pure strategies**
- **T: the period in which the market “clears” (all assets have been traded)**

Equilibrium Definition An equilibrium is a strategy profile $\sigma^* = \{p_t^*, a_t^{L*}, a_t^{H*}\}_{t=0}^{\infty}$ and a law of motion $\{q_t^*\}_{t=1}^{T(\sigma^*)}$ such that for all $t \leq T(\sigma^*)$

1. $p_t^*(\delta)$ solves the buyer’s problem for all $\delta \in [\underline{\delta}, \overline{\delta}]$;
2. For all $j \in \{L, H\}$, for all $\delta \in [\underline{\delta}, \overline{\delta}]$ and for all $p \in [0, u_H]$, $a_t^{j*}(\delta, p)$ maximizes seller utility; and
3. $q_t^*(\sigma^*)$ satisfies the law of motion

$$q_{t+1} = \frac{q_t(1 - \Pr\{\text{asset sells|H asset}\})}{q_t(1 - \Pr\{\text{asset sells|H asset}\}) + (1 - q_t)(1 - \Pr\{\text{asset sells|L asset}\})}$$
Properties of All Equilibria

1. The highest price that’s offered is c_H. All sellers accept this price.
 - Any price higher than c_H can be undercut and owners of both asset types will accept.

2. $p < c_H$ will only be accepted by an L seller.

3. For $\delta < \hat{\delta}_t$ all buyers offer $p = c_H$. For $\delta \geq \hat{\delta}_t$, $p \downarrow$ in δ.
 - Impatient agents want an asset now and offer a high price to ensure this.
 - More patient agents offer lower prices, avoiding the chance of paying c_H for an L asset.

4. Fraction of H assets increases over time
 - L assets sell at a fast rate because their sellers accept more prices.

5. The market clears in finite time.
 - Market clears when every buyer offers $p = c_H$.
 - It is not optimal for buyers to offer low prices and L sellers to reject these forever.
Equilibrium Characterization

- **Assumption:** Agents can only offer two prices, \(p_h = c_H \) and some \(p_l \in (0, u_L) \).
 - Makes the model tractable.
- Initial fraction of \(H \) assets, \(q_0 \), determines how long it takes for the market to clear.
- For some values of \(q_0 \) there are multiple equilibria.
- An example:

\[
\begin{array}{cccc}
0 & q_1 & \bar{q}_2 & 1 \\
\hline
k = 2 & k = 1 & k = 0
\end{array}
\]

Number of periods \(k \) for market to clear for \(q_0 \in (0, 1) \)
Number of periods k for market to clear for $q_0 \in (0, 1)$

- $k = 0$ if q_0 is sufficiently high
 - Average asset quality high enough \rightarrow optimal for all buyers to buy now.
 - Lower bound q_0: the most patient buyer is indifferent between offering p_h or p_l when everyone else offers p_h.
 - For q_0 close to q_0, buyer’s actions are complementary \rightarrow multiple equilibria.
Number of periods k for market to clear for $q_0 \in (0, 1)$

$k = 1$ for an eq’m strategy profile σ if

(i) $q_1 \geq q_0$,
(ii) the most patient buyer strictly prefers to offer p_1 at $t = 0$,
(iii) agents behave per the $k = 0$ equilibrium at $t = 1$.

- Conditions (i) and (iii) \rightarrow market clears at $t = 1$.
- Condition (i) determines the lower bound q_1.
- Condition (ii) determines the upper bound.

$k = 2$ for an eq’m strategy profile σ if

(i) $q_1 \in [\underline{q}_1, \bar{q}_1) \cap (0, 1)$,
(ii) the most patient buyer strictly prefers to offer p_1 at $t = 0$,
(iii) agents behave per the $k = 1$ equilibrium for $t \geq 1$.
Properties of the Equilibria

- The time it takes for the market to clear is weakly decreasing in the initial fraction of good assets \((q_0) \).
- The average trading price increases over time.
Asset Subsidy Program

Policy: Public-Private Investment Program for Legacy Assets.

- Gov. provided non-recourse loans to private investors to purchase certain assets.
- Investors had to cover a minimum fraction of the purchase price themselves.
- An investor could either (i) repay the loan or (ii) forfeit the asset to the government.
- It’s leverage without the downside risk.

Model

- Any agent can borrow a fraction \((1 - \gamma)\) of the purchase price for an asset.
- A buyer observes an asset’s payoff and then repays the loan or gives the asset to the government.
- Financing of the policy is not modeled.
Effects of the Policy

The policy has two effects

1. More buyers are willing to offer p_h.
 - Why? Because don’t pay the full price.
 - Effect: The thresholds (for q_0) for each equilibrium region decrease \rightarrow the time the market takes to clear weakly decreases.

2. More sellers reject p_l
 - Why? More agents offer p_h \rightarrow sellers who reject p_l today are more likely to get p_h tomorrow \rightarrow more sellers reject p_l.
 - Effect: The thresholds for some equilibrium regions can increase.

The 2nd effect can outweigh the 1st effect \rightarrow the market takes longer to clear
 - A sunset clause on the policy can mitigate this.