Optimal Security Design and Dynamic Capital Structure in a Continuous-Time Agency Model

DeMarzo and Sannikov, Journal of Finance, 2006

Jerome Williams

March 24, 2015
Overview

- A principal hires an agent to manage a risky project.
- The agent can misreport cashflows and divert some cash to private consumption.
- The principal decides a compensation scheme as a function of the agent’s reports.
- What is the optimal contract?
A project produces cash flows: \(dY_t = \mu dt + \sigma dZ_t \)
- The agent observes \(Y_t \).
- The principal does not.

The agent
- reports \(\hat{Y}_t \) to the principal,
- diverts the remainder \((Y_t - \hat{Y}_t) \), where \(\hat{Y}_t \leq Y_t \),
- and gets consumption \(\lambda(Y_t - \hat{Y}_t) \), where \(\lambda < 1 \).

The contract specifies
- payments \(dl_t \) to the agent
- a termination time \(\tau \)

as functions of the reports \(\hat{Y}_t \).
Preferences

- Both agents are risk neutral.
 - The agent discounts at rate γ.
 - The principal discounts at rate $r < \gamma$.
- When the project is terminated, the agent receives outside option R and the principal receives L.
- The agent’s expected payoff at date 0 is
 $\mathcal{W}_0 = \mathbb{E} \left[\int_0^T e^{-\gamma s} dC_s + e^{-\gamma \tau} R \right]$\where $dC_s = \lambda \left(dY_s - d\hat{Y}_s \right) + dl_s$.
- The principal’s expected payoff at date 0 is
 $b_0 = \mathbb{E} \left[\int_0^T e^{-rs} \left(d\hat{Y}_s - dl_s \right) + e^{-r \tau} L \right]$.
The optimal contract: preliminaries

- Deadweight loss from diverting cash flows.
 \[\Rightarrow \text{We can focus on contracts which induce truth-telling.} \]
- Define the **agent’s promised value** \(W_t(\hat{Y}_t) \) after a history of reports \((\hat{Y}_s, 0 \leq s \leq t)\) as:
 \[
 W_t(\hat{Y}_t) = \mathbb{E}_t \left[\int_t^\tau e^{-\gamma(s-t)} dl_s + e^{-\gamma(\tau-t)} R \right]
 \]

- **Lemma** There exists a process \(\beta_t \) such that
 \[
 dW_t = \gamma W_t dt - dl_t + \beta_t \left(d\hat{Y}_t - \mu dt \right)
 \]

- **Lemma** Truth-telling is incentive compatible if and only if \(\beta_t \geq \lambda \) for all \(t \leq \tau \).
 - **Intuition:** Steal \(dY_t - d\hat{Y}_t \): immediately gain \(\lambda(dY_t - d\hat{Y}_t) \), but lose \(\beta_t(dY_t - d\hat{Y}_t) \) in future expected payoff.
The principal’s value function

- Let $b(W)$ be the principal’s value function.
- The principal can always provide the agent with W by
 - paying him a lump-sum transfer of $dl > 0$,
 - and then moving to the optimal contract with payoff $W - dl$
- Therefore, it must be that, $\forall W$

\[
b(W) \geq b(W - dl) - dl
\]

which implies that

\[
b'(W) \geq -1, \ \forall W
\]

- Define W^1, the lowest W such that $b'(W) \leq -1$.
 It is optimal to pay the agent according to

\[
dl = \max(W - W^1, 0)
\]
First Best \((b + W = \mu / r)\)

\[rb + \gamma W = \mu \]

\[rb = \mu + \gamma W b'(W) + \frac{1}{2} \lambda^2 \sigma^2 b''(W) \]

Slope \(b' = -1\)
The principal’s value function

- On the region to the left of W^1, $b(W)$ solves the HJB equation

$$rb(W) = \max_{\beta \geq \lambda} \mu + \gamma Wb'(W) + \frac{1}{2} \beta^2 \sigma^2 b''(W)$$

- $\beta = \lambda$ is optimal.
 - **Intuition:** termination is inefficient ($\mu > rL + \gamma R$), so principal wants to reduce the risk that agent’s promised value falls to R.
- Boundary conditions: $b(R) = L$ and 1st and 2nd derivatives at W^1.
The optimal contract in full

Agent’s promised utility W_t evolves according to

$$dW_t = \gamma W_t dt - dl_t + \lambda \left(d\hat{Y}_t - \mu dt \right)$$

Compensation
When $W_t \in [R, W^1)$, $dl_t = 0$.
When $W_t = W^1$, payments dl_t cause W_t to reflect at W^1.

Principal’s payoff $b(W_t)$ satisfies

$$rb(W) = \mu + \gamma Wb'(W) + \frac{1}{2} \lambda^2 \sigma^2 b''(W) \quad \text{on } [R, W^1]$$

$$b'(W) = -1 \quad \text{for } W \geq W^1$$

and boundary conditions $b(R) = L$ and $rb(W^1) = \mu - \gamma W^1$.

Termination The contract is terminated at time τ, when W_t reaches R.
Optimal contract can be implemented (not uniquely) with

1. **Equity**, a fraction λ of which is held by the agent,
2. **Long-term debt**, with face value D,
3. **A credit line** with limit C^L and interest rate γ

For the right choice of long-term debt D and credit line limit C^L, it is incentive compatible for the agent to

- always pay down the credit line
- roll over the long-term debt
- pay any excess cash flow as dividends

thereby implementing the optimal contract.
Capital structure implementation: comments

1. Agent’s equity holding eliminates incentive to divert.

2. What stops the agent from overpaying dividends?
 - Assume the agent’s promised value under the contract follows
 \[W_t = R + \lambda(C_L - M_t) \]
 where \(M_t \) is the current draw on the credit line.
 - Now suppose the agent considers (i) borrowing up to the limit on the credit line, (ii) paying a large dividend, and (iii) defaulting.
 \[\text{payoff} = \lambda(C_L - M_t) + R \]
 \[\text{dividend} \quad \text{termination value} \]
 - By (\(\ast \)), the agent does just as well by behaving.
 - How to ensure (\(\ast \)) holds?
 - Choose long-term debt \(D \) and credit limit \(C_L \) such that the firm’s profit rate is such that (\(\ast \)) holds.
 - In particular: \(rD = \mu - \gamma R / \lambda - \gamma C_L \) and \(C_L = \lambda^{-1}(W_1 - R) \).
Conclusion

• The optimal contract is consistent with a capital structure that is widely observed in the data.
• Prediction: firms
 1. issue long-term debt
 2. use credit lines to absorb transient cashflow shocks
 3. pay out dividends once some cashflow threshold has been reached
• Everything in this presentation is in DeMarzo and Fishman (2007), the same setup but in discrete time.
• The main benefit of the continuous time model is **analytical comparative statics** and **security values**.
• Extensions
 • Hidden saving.
 • Hidden effort instead of diverting cash flow.
 • Endogenized termination payoffs.
 • Renegotiation.
 • Private benefits of control.