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Introduction



Estimation

“Usual” setting:

• We want to characterize some data: {ỹt , x̃t−1}Tt=1

• Assume a family of parametric models (= likelihoods)

{p(y , x |ρ) : ρ ∈ R}

where the true DGP is ρ0 ∈ R
• p is called the structural model

• For simplicity, let p be strictly stationary and ergodic

• Aim is to find (estimate) ρ0
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Alternative approaches

1. If feasible we can use Maximum Likelihood:

ρ̃0 ≡ argmaxρ∈R

T∑
t=1

log p(ỹt |x̃t−1; ρ)

2. If infeasible or you want to ”do something without having to do

everything simultaneously” (LPH) we can use GMM

• papers by Burnside, Christiano and Eichenbaum

• moments are “arbitrarily” picked (like calibration)

Key idea: MLE ≈ “GMM on the scores”

1

T

T∑
t=1

∂

∂ρ
log p(ỹt |x̃t−1; ρ) = 0 Ep(y |x ;ρ0)

[
∂

∂ρ
log p(y |x ; ρ0)

]
= 0

MLE finds the statistically most informative moments
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Gallant and Tauchen (1996)



Efficient Method of Moments

New object: auxiliary model or score generator, f (x , y |θ)

• (1) fits the data well, (2) tractable (can calculate scores)

• Not necessarily “structural”, e.g. VAR, ARCH, GARCH

• like a reduced form equation in classical SEM

Idea: if f fits the data that is generated by the structural model p, i.e.

f ≈ p, we can replace the score of p with the score of f in

Ep(y |x ;ρ0)
[
∂

∂ρ
log p(y |x ; ρ0)

]
= 0 so Ep(y |x,ρ)

[
∂

∂θ
log f (y |x ; θ)

]
should be (close to) zero at the true ρ0, if p is correctly specified

• Use this vector of moment conditions for GMM

• How to get rid of θ? How do we calculate expectations under p?
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Efficient Method of Moments – Algorithm

Step 1: projection (data onto the auxiliary model)

• f is fitted by ML to get θ̃T . Then the score over the data satisfies

1

T

T∑
t=1

∂

∂θ
log f (ỹt |x̃t−1; θ̃T ) = 0

• Calculate

ĨT =
1

T

T∑
t=1

[
∂

∂θ
log f (ỹt |x̃t−1; θ̃T )

] [
∂

∂θ
log f (ỹt |x̃t−1; θ̃T )

]T
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Efficient Method of Moments – Algorithm

Step 2: estimation

• Suppose that we can simulate p for given ρ to get {ŷ (ρ)
n , x̂

(ρ)
n−1}Nn=1.

For large enough N, define

m(ρ, θ) ≡ 1

N

N∑
n=1

∂

∂θ
log f

(
ŷ (ρ)
n |x̂

(ρ)
n−1; θ

)
≈ Eρ

[
∂

∂θ
log f

(
ŷ (ρ)
n |x̂

(ρ)
n−1; θ

)]

• If the DGP is p(y |x , ρ0), we expect m(ρ0, θ̃T ) = 0

• Estimator for ρ0 is

ρ̂T ≡ argminρ∈R mT (ρ, θ̃T )(ĨT )−1m(ρ, θ̃T )
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Asymptotic properties

For fixed f and p, let θ0 be defined so that m(ρ0, θ) = 0 is satisfied.

Asymptotics

Under standard regularity conditions

lim
T→∞

ρ̂T = ρ0 a.s.
√
T (ρ̂T − ρ0)⇒ N

(
0, [(M0)T (I0)−1M0]−1

)
lim

T→∞
M̂T = M0 a.s. and lim

T→∞
ĨT = I0 a.s.

where M(ρ, θ) = ∂
∂ρm(ρ, θ), M0 = M(ρ0, θ0) and M̂T = M(ρ̂T , θ̃T ).

If for some open neighborhood R0 of ρo , there is a twice continuously

differentiable g : R0 7→ Θ, s.t. p(y |x , ρ) = f (y |x , g(ρ)), then the

estimator has the same asymptotic distribution as the MLE of the

structural model.
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Score generator – guidelines

• Score in closed form AND closely approximates the data

• Identification

• Order condition: dim(θ) ≥ dim(ρ) (minimal complexity)

• Rank condition: nonlinear framework, hard to check. In case of flat

spots, we can adjust the score generator to include higher moments.

• Example: for financial data, sequence of densities defined by an

ARCH or GARCH process

• General purpose score generator: Seminonparameteric (SNP)

• K -truncated Hermite exp of the square root of an innovation density

• expected to closely approximate any nonlinear Markovian process

• tractable and flexible (easy to adjust to certain features of the data)
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Isn’t it the same as indirect inference?



Indirect inference (Wald approach)

Three main steps

Step 1: MLE of log f on the data to get θ̂

θ̂T ≡ argmaxθ log f (ỹ , x̃ |θ)

Step 2: MLE of Ep[log f ] to get the binding function θ(ρ)

θ(ρ) ≡ argmaxθ Ep(y ,x|ρ)
[
log f (y (ρ), x (ρ)|θ)

]
Step 3: Estimate ρ0 with

ρ̂T ≡ argminρ∈R (θ̂T − θ(ρ))TW (θ̂T − θ(ρ))

where W =
[
J−1IJ−1

]−1 I = Ep(y ,x|ρ)
[(

∂
∂θ log f (y , x |θ(ρ))

)2]
and J = Ep(y ,x|ρ)

[
∂2

∂θ∂θT
log f (y , x |θ(ρ))

]
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So are the two the same?

YES

• both approaches use auxiliary model as an adjunct

• for any given auxiliary model same asymptotic distribution

NO

• EMM computationally less intensive (for the binding function we

reestimate the auxiliary model for each ρ), espec. with non-linearities

• “ The auxiliary model does not need to be an accurate description of

the data generating process. Instead, the auxiliary model serves as a

window through which to view both the actual, observed data and

the simulated data generated by the economic model: it selects

aspects of the data upon which to focus the analysis.” (A. Smith)

≈ GMM with “arbitrarily” picked moments
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