Accounting for the U.S. Earnings and Wealth Inequality

Ana Castaneda, Javier Diaz-Gimenez, Jose-Vitor Rios-Rull JPE,2003

20 min presentation for Sargent's RG 10/18/05

Key Features

- mix the main features of the dynastic and life cycle models
- model explicitly the U.S. Social Security system
- calibrate the model economy to the distribution (Lorenz curves) of U.S. earnings and wealth

Households

- a continuum of households
- *l* units of disposable time each period
- working-age households (*E*):
 - uninsured idiosyncratic shock to efficiency labor units
 - positive probability of retiring
- retire households (\mathcal{R}):
 - zero efficiency labor units
 - positive probability of dying
- when a retired household dies, it is replaced by a working-age descendant.
- household inherits the estate of the previous member of its dynasty at the beginning of the first period of its working life

• utility:
$$E\left[\sum_{t=0}^{\infty} \beta^t \left(\frac{c_t^{1-\delta_1}}{1-\delta_1} + \chi \frac{(l-l_t)^{1-\delta_2}}{1-\delta_2}\right) |s_0\right]$$

Assumptions on Shock Process

• The joint age and endowment of efficiency labor units shock $s \in S = \mathcal{E} \bigcup \mathcal{R} = \{1, 2, ..., J\} \bigcup \{J + 1, J + 2, ..., 2J\}$

$$\Gamma_{SS} = \begin{pmatrix} \Gamma_{\mathcal{E}\mathcal{E}} & \Gamma_{\mathcal{E}\mathcal{R}} \\ \Gamma_{\mathcal{R}\mathcal{E}} & \Gamma_{\mathcal{R}\mathcal{R}} \end{pmatrix}$$

- every working-age household faces the same probability of retiring: $\Gamma_{ER} = p_{l\varrho} \mathbf{I}$
- every retired household faces the same probability of dying: $\Gamma_{\mathcal{RR}} = p_{\varrho\varrho} \mathbf{I}$
- Γ_{RE} is controlled by two other parameters ϕ_1 , ϕ_2
- in the paper, J = 4, so we have $4^2 + 1 + 1 + 2 4 = 16$ parameters to be determined for Γ_{SS}

Technology, Government and Market Arrangements

- Technology
 - CRS aggregate production: $Y = K^{\theta} L^{1-\theta}$
 - \circ capital depreciates at rate δ
- Government

• income tax: $\tau(y_t) = a_0[y - (y^{-a_1} + a_2)^{-1/a_2}] + a_3y$

• estate tax:

$$\tau_E(z) = \begin{cases} 0 & \text{for } z \leq \underline{z} \\ \tau_E(z - \underline{z}) & \text{for } z > \underline{z} \end{cases}$$

- \circ public transfer $\omega(s_t)$
- $^{\circ}$ government spending G
- Market Arrangement
 - household cannot borrow

Household's problem

$$v(s,a) = \max_{c \ge 0, z \in A, 0 \le l \le \bar{l}} \{ u(c,\bar{l}-l) + \beta \sum_{s' \in S} \Gamma_{ss'} v[s',a'(z)] \}$$
(1)

$$s.t \quad c + (z) = y - \tau(y) + a$$
 (2)

$$y = ar + e(s)lw + \omega(s) \tag{3}$$

$$a'(z) = \begin{cases} z - \tau_E(z) & \text{if } s \in \mathcal{R} \text{ and } s' \in \mathcal{E} \\ z & \text{otherwise} \end{cases}$$
(4)

Equilibrium

A stationary equilbirium is a value function v(s, a); household policies c(s, a), z(s, a), l(s, a); government policies $\tau(y), \tau_E(z), \omega(s), G$; a stationary probability measure of households, x; factor prices, (r, w); and aggregates K, L, T, Tr, s.t.

- $K = \int a dx; L = \int l(s, a) e(s) dx; Tr = \int \omega(s) dx$ $T = \int \tau(y) dx + \int \xi_{s \in \mathcal{R}} \cdot (\Sigma_{s' \in \mathcal{E}} \Gamma_{s, s'}) \cdot \tau_E(z) \cdot z(s, a) dx$
- Given x, K, L, r, w, the household policy solves the households' decision problem described (1)-(4)

•
$$r = f_1(K, L) - \delta$$
, $w = f_2(K, L)$

goods market clears:

 $\int [c(s,a) + z(s,a)]dx + G = f(K,L) + (1-\delta)K$

- government b.c. satisfied: G + Tr = T
- the measure of households is stationary: $x(B) = \int_{B} (\int_{S,\mathcal{A}} \{\xi_{z(s,a)} \xi_{s \in \mathcal{R} \lor s' \in \mathcal{E}} + \xi_{[1-\tau_{E}z]z(s,a)} \xi_{s \in \mathcal{R} \land s' \in \mathcal{E}} \} \Gamma s, s' dx) dz ds'$

Targets

U.S. Economy Satistics the Model Economy Try to Mimic

	Variables	Num. of targets
macro aggregates	$\frac{K}{Y} = 3.13, \ \frac{I}{Y} = 18.6\%$	5
	$\frac{G}{Y} = 20.2\%, \ \frac{Tr}{Y} = 4.9\%$	
leisure and consum.	$\frac{l}{\overline{l}} = .3 \ \sigma_1 = 1.5 \ \frac{CV_c}{CV_l} = 3$	4
expected durations	$D_w = 45, D_r = 18$	2
earning ratios	$rac{l_{[41,60]}}{l_{[20,40]}} = 1.3$	1
earning correlation	ho = 0.4	1
income tax	a_0,a_1,a_2,a_3	4
estate tax	$\underline{z} = 10\bar{y}, \ \frac{Revenue}{GDP} = 0.2$	2
normalization	$l(1)=1$, $\Gamma_{\mathcal{E}\mathcal{E}}$	5
Gini, lorenz curve		15

Calibrated Parameter Values

	Parameter	Value
Preferences:		
Time discount factor	β	.924
Curvature of consumption	σ_1	1.500
Curvature of leisure	σ_2	1.016
Relative share of consumption and	-	
leisure	X	1.138
Productive time	ℓ	3.200
Age and employment process:		
Common probability of retiring	p_{eq}	.022
Common probability of dying	$1 - p_{ee}$.066
Earnings life cycle controller	ϕ_1	.969
Intergenerational earnings persistence		
controller	$oldsymbol{\phi}_2$.525
Technology:		
Capital share	heta	.376
Capital depreciation rate	δ	.059
Government policy:		
Government expenditures	G	.296
Normalized transfers to retirees	ω	.696
Income tax function parameters	a_{0}	.258
-	a_1	.768
	a_2	.491
	a_3	.144
Estate tax function parameters:		
Tax-exempt level	<u>z</u>	14.101
Marginal tax rate	$oldsymbol{ au}_E$.160

PARAMETER VALUES FOR THE BENCHMARK MODEL ECONOMY

Transition Prob Matrix and Efficiency Labor Units

Transition Probabilities of the Process on the Endowment of Efficiency Labor Units for Working-Age Households That Remain at Working Age One Period Later, $\Gamma_{\varepsilon\varepsilon}$ (%)

	To s'							
FROM S	s' = 1	s' = 2	s' = 3	s' = 4				
s = 1	96.24	1.14	.39	.006				
s = 2	3.07	94.33	.37	.000				
s = 3	1.50	.43	95.82	.020				
s = 4	10.66	.49	6.11	80.51				

Relative Endowments of Efficiency Labor Units, e(s), and the Stationary Distribution of Working-Age Households, γ_{ε}^{*}

	s = 1	s = 2	s = 3	s = 4
e(s)	1.00	3.15	9.78	1,061.00
$oldsymbol{\gamma}^*_{\mathcal{E}}~(\%)$	61.11	22.35	16.50	.0389

Findings 1

VALUES OF THE TARGETED RATIOS AND AGGREGATES IN THE UNITED STATES AND IN THE BENCHMARK MODEL ECONOMIES									
	K/Y (1)	<i>I/Y</i> (2)	G/Y (3)	<i>Tr/Y</i> (4)	$\begin{array}{c} T_{E} / Y \\ (5) \end{array}$	h(6)	$\frac{\mathrm{CV}_{c}/\mathrm{CV}_{l}}{(7)}$	${e_{\!40/20} \over (8)}$	$ \begin{array}{c} \rho(f, s) \\ (9) \end{array} $
Target (United States) Benchmark	$\begin{array}{c} 3.13\\ 3.06\end{array}$		20.2% 20.8%				$3.00 \\ 3.25$	$\begin{array}{c} 1.30\\ 1.09 \end{array}$.40 .25

Note.—Variable h (col. 6) denotes the average share of disposable time allocated to the market. The statistic CV_{ℓ}/CV_{l} (col. 7) is the ratio of the coefficients of variation of consumption and of hours worked.

Findings 2

DISTRIBUTIONS OF EARNINGS AND OF WEALTH IN THE UNITED STATES AND IN THE BENCHMARK MODEL ECONOMIES (%)

			Ģ	Top Groups (Percentile)						
Economy	Gini	First	Second	Third	Fourth	Fifth	90th– 95th	95th– 99th	99th– 100th	
			A. Distributions of Earnings							
United States Benchmark	.63 .63	40 .00	$3.19 \\ 3.74$	$12.49 \\ 14.59$	$23.33 \\ 15.99$	$61.39 \\ 65.68$	$12.38 \\ 15.15$	$16.37 \\ 17.65$	$14.76 \\ 14.93$	
			B. Distributions of Wealth							
United States Benchmark	.78 .79	39 .21	$\begin{array}{c} 1.74\\ 1.21 \end{array}$	$5.72 \\ 1.93$	$13.43 \\ 14.68$	$79.49 \\ 81.97$	$12.62 \\ 16.97$	$23.95 \\ 18.21$	$29.55 \\ 29.85$	

Findings 3

Distributions of Consumption in the United States and in the Benchmark Model Economies (%)

			Quintile					op Grou Percentil	
Economy	Gini	First	Second	Third	Fourth	Fifth	90th– 95th	95th– 99th	99th– 100th
United States:									
Nondurables	.32	6.87	12.27	17.27	23.33	40.27	9.71	10.30	4.83
Nondurables+*	.30	7.19	12.96	17.80	23.77	38.28	9.43	9.69	3.77
Benchmark:									
Wealthiest 1%									
excluded	.40	5.23	12.96	13.55	20.41	47.85	12.77	14.89	3.83
Entire sample	.46	4.68	11.58	12.07	18.68	52.99	12.82	13.45	11.94

* Includes imputed services of consumer durables.

Robustness and Policy Experiment

Two Robustness Exercises:

- mimic the observed intergenerational correlation of earnings while allowing earnings to display no life cycle profile
- mimic the observed life cycle earnings ratio while allowing earnings to display no intergenerational correlation

One Policy Experiment:

abolishing estate taxation

Discussion

Problems ?

- the implied risk-free interest rate $r = \theta \frac{Y}{K} \delta = 6.11\%$
- $\beta = 0.924$ vs. 0.96 $\delta = 0.059$ vs. 0.075