A Unified Framework for Monetary Theory and Policy Analysis Ricardo Lagos and Randall Wright JPE

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Motivation

The goal is to build an *analytically tractable* model based on explicit market frictions that motivate the existence of money to study monetary policy

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The Economic Environment

- time is discrete
- a continuum of infinitely lived agents (discount factor β)
- each period is divided into two subperiods: "day" and "night"
- during the "day" agents can produce a special good. This good comes in many varieties and each agent only gains utility from consuming a subset of these special goods. It is assumed that agents do not gain utility from consuming the special good they can produce themselves
- during the "day" the agents interact in a decentralized market (anonymous bilateral matching)
- during the "night" agents can produce a general good which they can trade in a centralized (Walrasian) market
- neither good is storable. However, in this economy intrinsically worthless fiat money exists that is storable

The Economic Environment

utility is given by:

$$\mathcal{U}(x,h,X,H) = u(x) - c(h) + U(X) - H \tag{1}$$

u(0)=c(0)=0

Probabilities in decentralized market:

- 1. α probability of meeting another agent during one day
- 2. δ double coincidence of wants (agents can directly trade goods)
- 3. σ single coincidence of wants
- ▶ total money stock fixed at *M* (for now)
- let F_t(.) be distribution of money holdings across agents at the start of "day" t
- ► let G_t(.) be distribution of money holdings across agents at the start of "night" t
- ϕ_t is the price of money

Bargaining in the decentralized Market

some more notation:

- 1. $V_t(m)$ value function of agent at the beginning of "day" t
- 2. $W_t(m)$ value function of agent at the beginning of "night" t
- 3. $q_t(m, \tilde{m})$ amount of specialized good traded in single coincidence meeting
- 4. $d_t(m, \tilde{m})$ money traded in single coincidence meeting
- 5. $B_t(m, \tilde{m})$ payoff in double coincidence meeting
- double coincidence of wants:

symmetric Nash Bargaining with the continuation values as threat point takes place

one can show that no money changes hands and

 $B_t(m, \tilde{m}) = u(q*) - c(q*) + W_t(m)$ where q* is defined as the solution to u'(q*) = c'(q*)

Bargaining in the decentralized Market

Generalized NB when two agents want to trade money for a good

$$(q,d) = \arg \max[u(q) + W_t(m-d) - W_t(m)]^{\theta} [-c(q) + W_t(\tilde{m}+d) - W_t(\tilde{m})]^{1-\theta}$$
(2)

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

q and d turn out to depend only on the money holdings of the buyer, not the seller

Value Functions

$$V_{t}(m) = \alpha \sigma \int [u(q_{t}(m, \tilde{m})) + W_{t}(m - d_{t}(m, \tilde{m}))] dF_{t}(\tilde{m})$$
(3)
+ $\alpha \sigma \int -c(q_{t}(\tilde{m}, m)) + W_{t}(m + d_{t}(\tilde{m}, m))] dF_{t}(\tilde{m})$
+ $\alpha \delta \int B_{t}(m, \tilde{m}) dF_{t}(\tilde{m}) + (1 - 2\alpha \sigma - \alpha \delta) W_{t}(m)$
 $W_{t}(m) = \max_{X, H, m'} [U(X) - H + \beta V_{t+1}(m')]$ (4)

subject to

$$X = H + \phi_t m - \phi_t m' \tag{5}$$

$$X \ge 0 \tag{6}$$

$$0 \le H \le \overline{H} \tag{7}$$

Equilibrium Definition

An equilibrium consists of the objects $(V_t, W_t, X_t, H_t, m'_t, q_t, d_t, \phi_t, F_t, G_t) \forall t$ such that

- X_t, H_t, m' solve the agents' problem in the centralized market and result in value function W_t
- ▶ q_t, d_t and B_t are the result of the Nash bargaining in the decentralized market and result in V_t
- $\phi_t > 0$
- good and money markets clear
- ► F_t, G_t are consistent with initial distributions and the evolution of money holdings implied by the other equilibrium objects

Results

- $\phi_t \ge \beta \phi_{t+1}$, i.e. the minimal inflation rate in this economy is $\phi_t/\phi_{t+1} = \beta$, which is the Friedman rule
- ▶ for θ near 1 there is a unique solution for m', i.e. F_t is degenerate
- authors also provide alternative conditions which hold for any θ
- solution then reduces to the following difference equation:

$$z(q_t) = \beta z(q_{t+1}) \left[\alpha \sigma u'(q_{t+1})(z'(q_{t+1}))^{-1} + 1 - \alpha \sigma \right]$$
(8)

$$z(q) = \frac{\theta c(q)u'(q) + (1 - \theta)u(q)c'(q)}{\theta u'(q) + (1 - \theta)c'(q)}$$
(9)

in steady state:

$$\frac{u'(q)}{z'(q)} = 1 + \frac{1-\beta}{\alpha\sigma\beta}$$
(10)

Changes in the Money Supply

$$z(q_t)/M_t = \beta z(q_{t+1})/M_{t+1} \left[\alpha \sigma u'(q_{t+1})(z'(q_{t+1}))^{-1} + 1 - \alpha \sigma \right]$$
(11)

Also, suppose

$$M_{t+1} = (1+\tau)M_t$$
 (12)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Then, in steady state (for real variables):

$$\frac{u'(q)}{z'(q)} = 1 + \frac{1 - \beta + \tau}{\alpha\sigma\beta} = 1 + \frac{i}{\alpha\sigma}$$
(13)

Quantitative Analysis

•
$$u(q) = [(q+b)^{1-\eta} - b^{1-\eta}]/(1-\eta)$$

• $U(X) = B \log(X)$

$$\blacktriangleright c(h) = h$$

▶ *r* = 0.04

$$\blacktriangleright \alpha = 1, \delta = 0$$

$$\blacktriangleright M/(PY) = z(q)/B + \sigma z(q)$$

• (η, B, σ) are set to fit the money demand data

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• three possible values of θ : (1, 0.5, 0.343)

୍ 🗄 ୬୯୯

Welfare Analysis

- steady state utility: $(1 - \beta)V(\tau) = U(X*) - X* + \alpha\sigma[u(q(\tau)) - q(\tau)]$
- Experiment: $(1 - \beta)V_{\Delta}(0) = U(X * \Delta) - X * +\alpha\sigma[u(q(0)\Delta) - q(\tau)]$ want to solve for Δ_0 such that $V_{\Delta_0}(0) = V(\tau)$ for $\tau = 0.1$

	$\theta = 1$		$\theta = .5$	$\theta_{\mu} = .343$	$\theta = 1$
	$\sigma = .31$ $\eta = .27$ B = 2.13 (1)	$\sigma = .50$ $\eta = .16$ B = 1.97 (2)	$\sigma = .50$ $\eta = .30$ B = 1.91 (3)	$\sigma = .50$ $\eta = .39$ B = 1.78 (4)	$\sigma = .50$ $\eta = .39$ B = 1.78 (5)
$q(\tau)$.243	.206	.143	.094	.522
q(0)	.638	.618	.442	.296	.821
$q(\tau^F)$	1.000	1.000	.779	.568	1.000
$1 - \Delta_0$.014	.014	.032	.046	.012
$1 - \Delta_F$.016	.016	.041	.068	.013

Annual Model (1900–2000)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●