Optimal Fiscal Policy With Redistribution

Ivan Werning

Discussion by Axelle Ferriere

March 2012
Motivation

- **Standard Ramsey problem**: lump-sum taxes arbitrarily ruled-out
 - Labor taxes are smoothed; Capital tax is zero

- Arbitrary second-best?

- **Werning problem**: heterogenous agents, linear taxes on revenues from labor and capital, **lump-sum taxes**:
 - Positive (distortionary) labor taxes emerge *endogenously* as a redistributive tool
 - Trade-off: efficiency versus redistribution

- Extension: with nonlinear taxes (Mirleesian model)?
Environment

- The agents:
 - Heterogenous workers: \(\forall i \in I \) a mass \(\pi_i \) of type-\(i \) agents:
 - Productivity \(\theta_i \):
 \[U^i(c^i_t, L^i_t) = U(c^i_t, \frac{L^i_t}{\theta_i}) \]
 - Government
 - Representative firm

- Aggregate uncertainty:
 \(s^t = (s_0, s_1, \ldots, s_t) \) w.p. \(\nu_t(s^t) \)

- Resource constraint \(\forall t \forall s^t \):
 \[c_t(s^t) + K_{t+1}(s^t) + g_t(s^t) \leq F(L_t(s^t), K_t(s^{t-1}), s^t) + (1 - \delta)K_t(s^{t-1}) \]
 with \(\sum_i \pi_i c^i_t(s^t) = c_t(s^t) \) and \(\sum_i \pi_i L^i_t(s^t) = L_t(s^t) \)

- Complete Markets
Competitive Equilibrium I

Policy: Given an initial debt, linear labor and capital taxes, lump-sum taxes, not indexed by i:

$$\{\tau_t(s^t), \kappa_t(s^t), T_t(s^t)\}_{t,s^t}$$
Competitive Equilibrium I

Policy: Given an initial debt, linear labor and capital taxes, lump-sum taxes, not indexed by i:

$$\{\tau_t(s^t), \kappa_t(s^t), T_t(s^t)\}_{t,s^t}$$

+ **Government:**

$$\sum_{i \in I} \pi_i B^i(s_0) + \sum_{t,s^t} p_t(s^t) g_t(s^t) \leq T + ...$$

$$... + \sum_{t,s^t} p_t(s^t)(\tau(s^t) w_t(s^t) L_t(s^t) + \kappa_t(s^t)(r_t(s^t) - \delta) K_t(s^{t-1}))$$

where $T = \sum_{t,s^t} p_t(s^t) T_t(s^t)$.

+ **Representative firm:** Static maximization.

$$w_t = F_L(L_t, K_t, s_t) \text{ and } r_t = F_K(L_t, K_t, s_t)$$
Competitive Equilibrium II

+ Households:

\[\max \{ c_i^t(s^t), L_i^t(s^t) \} \sum_{t=0}^{\infty} \beta^t \sum_{s^t} \nu_t(s^t) U_i(c_i^t(s^t), L_i^t(s^t)) \]

such that

\[\sum_{t,s^t} p_t(s^t) [c_i^t(s^t) - w_t(s^t)(1 - \tau_t(s^t))L_i^t(s^t) + T_t(s^t)] \leq \Omega_0^i \]

where \(\Omega_0^i \equiv (1 + (1 - \kappa_0)(r_0 - \delta))k_0^i + B^i(s_0) \).
Competitive Equilibrium II

+ Households:

$$\max_{\{c_t(s^t), L_t(s^t)\}} \sum_{t=0}^{\infty} \beta^t \sum_{s^t} \nu_t(s^t) U^i(c_t(s^t), L_t(s^t))$$

such that

$$\sum_{t,s^t} p_t(s^t) [c_t(s^t) - w_t(s^t)(1 - \tau_t(s^t))L_t(s^t) + T_t(s^t)] \leq \Omega_0^i$$

where $\Omega_0^i \equiv (1 + (1 - \kappa_0)(r_0 - \delta))k_0^i + B^i(s_0)$.

First-order conditions:

$$p(s^t) = \beta \nu_t(s^t) \frac{U^i_c(s^t)}{U^i(s_0)}; \quad w_t(s^t)(1 - \tau^i_t(s^t)) = -\frac{U^i_L(s^t)}{U^i_c(s^t)}$$

Standard implementability constraints for each agent ($\forall i \in I$):

$$\sum_{t,s^t} \beta^t \nu_t(s^t) [U^i_c(s^t)c_t(s^t) + U^i_L(s^t)L_t(s^t)] \leq U^i_c(s_0)(\Omega_0^i - T)$$
Allocating Aggregates I

∀ C.E. ∃ market weights φ ≡ {φ_i}, with φ_i ≥ 0 and ∑ φ_i π_i = 1, so that the individual assignments solve the static subproblem:

\[U^m(c, L; \phi) \equiv \max_{\{c^i, L^i\}} \sum_{i \in I} \phi^i \pi^i U^i(c^i, L^i) \]

s.t. \(\sum_{i \in I} c^i \pi^i = c \) and \(\sum_{i \in I} L^i \pi^i = L \)

Notation:

Let \(\hat{c}^i_t(c_t(s^t), L_t(s^t); \phi), \hat{L}^i_t(c_t(s^t), L_t(s^t); \phi) \), the solution for \(i \).

Let \(\hat{U}^i(c_t(s^t), L_t(s^t); \phi) = U^i(\hat{c}^i_t(c_t(s^t), L_t(s^t); \phi), \hat{L}^i_t(c_t(s^t), L_t(s^t); \phi)) \).

Then, \(U^m(c, L; \phi) \equiv \sum_{i \in I} \phi^i \pi^i \hat{U}^i(c, L; \phi) \).

Envelope Conditions:

\(U^m_c(c, L; \phi) = \phi^i U^i_c(\hat{c}^i, \hat{L}^i; \phi) \) and \(U^m_L(c, L; \phi) = \phi^i U^i_L(\hat{c}^i, \hat{L}^i; \phi) \)
Allocating Aggregates II

+ **FOC** if market-representative-agent:

\[w_t(1 - \tau_t) = \frac{-U_L^m(c_t, L_t; \phi)}{U_C^m(c_t, L_t; \phi)} = \frac{-\phi^j U_L^i(\hat{c}_t^i, \hat{L}_t^i; \phi)}{\phi^j U_C^i(\hat{c}_t^i, \hat{L}_t^i; \phi)} \]

+ **Implementability constraints** can be rewritten \(\forall i \in I \):

\[
\sum_{t,s^t} \beta^t \nu_t(s^t) \left[U_C^m(c_t(s^t), L_t(s^t); \phi) \hat{c}_t^i(c_t(s^t), L_t(s^t); \phi) + \ldots + U_L^m(c_t(s^t), L_t(s^t); \phi) \hat{L}_t^i(c_t(s^t), L_t(s^t); \phi) \right] \leq U_C^m(c_0, L_0; \phi)(\Omega_0^i - T)
\]

Proposition: Given \(\{\Omega_0^i\} \), an aggregate allocation \(\{c_t(s^t), L_t(s^t), K_{t+1}(s^t)\} \) can be supported by a C.E. \(\iff \) the resource constraint holds and \(\exists \) market weights \(\phi \) and a lump-sum tax \(T \) such that the new implementability conditions hold \(\forall i \in I \).
The Planner Problem

Let $\lambda \equiv \lambda_i$, where λ_i is the Pareto weight of agent i.

$$\max \{ c_t(s^t), L_t(s^t), K_t(s^t); \tau; \phi \} \sum_i \lambda_i \pi_i \sum_{t,s^t} \nu_t(s^t) \hat{U}^i(c_t(s^t), L_t(s^t); \phi)$$

such that:

- Resource constraints hold $\forall t \ \forall s^t$
- New Implementability constraints hold $\forall i \in I$
Two Examples: Optimal Wedges

+ **Separable Isoelastic Utility:** \(U^i(c, L) = \frac{1}{1-\sigma} c^{1-\sigma} - \frac{\alpha}{\gamma} (L/\theta^i)^\gamma \)
 - \(\tau \) is constant across time and states; \(\kappa = 0 \)

+ **Balanced Growth Preferences:** \(U^i(c, L) = \frac{(c^\alpha (1-L/\theta^i)^{1-\alpha})^{1-\sigma}}{1-\sigma} \)
 - Quantitatively: \(\tau \) is constant across time and states; \(\kappa \) is zero;

+ **A partial-equivalence with Ramsey:**

In these two cases, these two expressions are proportional for some \(\hat{\mu} \):

\[
\begin{align*}
\sum_i \pi_i (\lambda_i \hat{U}^i(c, L) + \mu_i[U^m_c(c, L)\hat{c}^i + U^m_L(c, L)\hat{L}^i]) \\
\hat{U}^m(c, L) + \hat{\mu}[U^m_c(c, L)c + U^m_L(c, L)L]
\end{align*}
\]
The marginal cost from distortions should be equated to the marginal benefit from redistribution.

- **RA:** the marginal benefit from redistribution is constant (zero).
- **Aggregate shocks but no shift in the distribution of types:** the marginal benefit from redistribution is basically constant.
- **Shocks to the distribution:**
 - Separable isoelastic utility function;
 - $g_t(s^t) = 0$, $TFP(s_t) = 1$; θ_t^H / θ_t^L is a function of s_t.
 - Then, $\tau(s^t) = \tau(s_t)$ and $\kappa(s^t) = 0$.

Distortionary Labor Taxes are Desirable (sometimes)
Three Differences with a Ramsey Plan

- **Capital taxation and time-inconsistency:**
 - Ramsey: redistribution between private and public sector
 - Werning: redistribution between private agents

- **Debt management:**
 - Ramsey: debt as an insurance tool
 - Werning: a Ricardian Equivalence

- **State-contingent capital taxes:**
 - Werning: Cannot replicate a complete-market outcome
A Mirleesian Economy with Aggregate Uncertainty

Planner Problem:

\[
\max \sum_{t,s^t} \beta^t \nu_t(s^t) \sum_{i \in I} \pi^i \lambda^i \left(u(c^i(s^t)) - v \left(\frac{L_i(s^t)}{\theta_i^t(s^t)} \right) \right) \text{ s.t.}
\]

- Resource Constraint holds \(\forall t \ \forall s^t \);
- Incentive Constraint holds \(\forall i \in I \) and for all reports \(j \in I \)

\[
\sum_{t,s^t} \beta^t \nu_t(s^t) \left(\left[u(c^i(s^t)) - v \left(\frac{L_i(s^t)}{\theta_i^t(s^t)} \right) \right] - \left[u(c^j(s^t)) - v \left(\frac{L_j(s^t)}{\theta_j^t(s^t)} \right) \right] \right) \geq 0
\]
A Mirleesian Economy with Aggregate Uncertainty

Planner Problem:

\[
\max \sum_{t,s^t} \beta^t \nu_t(s^t) \sum_{i \in I} \pi^i \lambda_i \left(u(c^i(s^t)) - v\left(\frac{L^i_t(s^t)}{\theta^i_t(s^t)} \right) \right) \]

s.t.

- Resource Constraint holds \(\forall t \ \forall s^t \);
- Incentive Constraint holds \(\forall i \in I \) and for all reports \(j \in I \)

\[
\sum_{t,s^t} \beta^t \nu_t(s^t) \left(\left[u(c^i(s^t)) - v\left(\frac{L^i_t(s^t)}{\theta^i_t(s^t)} \right) \right] - \left[u(c^j(s^t)) - v\left(\frac{L^j_t(s^t)}{\theta^j_t(s^t)} \right) \right] \right) \geq 0
\]

Proposition: At any constrained-efficient allocation:

(i) The intertemporal Euler equation holds.

(ii) The implicit marginal tax on labor \(\tau^i_t(s^t) \) depends only on the current skill distribution \(\{\theta^i_t(s^t)\} \).
Conclusion/Next Steps

- A rationale for distortionary taxes
- A tractable model for Ramsey problems with heterogeneity
- Bridge between Ramsey and Mirlees