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Introduction

Question: How does sticky price affect the conduct of fiscal/monetary policy?

A model in which a fraction α of firms set prices one period in advance.

One-period non-state-contingent debt.

Labor income and consumption tax.

Answer: Not at all.

Ramsey allocations are the same under sticky prices and under flexible prices.

Policies that implement the Ramsey allocations are also the same.
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Environment

Discrete Time, Infinite Horizon.

st ≡ (s0, s1, s2, ..., st) where st ∈ St

3 types of agents:

A representative household.

Government.

A continuum of firms, indexed by i ∈ [0, 1]:

Firms i ∈ [0, α): sticky-price firms that set their prices one period in advance.

Firms i ∈ [α, 1]: flexible-price firms that set their price contemporaneously.

yi,t(s
t) = A(s t)ni (s

t)

3 goods:

Ck(s
t) =

[

∫ 1

0
ck,i (s

t)(θ−1)/θdi
]θ/(θ−1)

, (k = 1, 2)

G (st) =
[

∫ 1

0
gi (s

t)(θ−1)/θdi
]θ/(θ−1)
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Household

max
{c1,i (s

t ),c2,i (s
t ),N(st ),M(st ),B̄(st ),B(st+1)}∞

t=0,i∈[0,1]

∞
∑

t=0

∑

st

βtπ(st)u(C1(s
t), C2(s

t), N(st))

subject to

Pc (st)C1(s
t) ≤ M(st)

M(st) + B̄(st) +
∑

st+1|st

Q(st+1|st)B(st+1) ≤ W(st)

where

W(st+1) ≡ M(st) + R(st)B̄(st) + B(st+1) −

∫ 1

0
pc

i (st)c1,i (s
t)di

−

∫ 1

0
pc

i (st)c2,i (s
t)di + [1 − τn(st)]w(st)N(st)

pc
i (st) = [1 + τ c (st)]pi (s

t)

Pc (st) =
[

∫ 1

0
[pc

i (st)](1−θ)di
]1/(1−θ)

W(s0) = 0
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Household FONCs

c1,i (s
t)

C1(st)
=

[ pc
i (s

t)

Pc(st)

]−θ
&

c2,i (s
t)

C2(st)
=

[ pc
i (s

t)

Pc(st)

]−θ

uC ,1(s
t)

uC ,2(st)
= R(st)(≥ 1)

−
uC ,2(s

t)

uN(st)
=

Pc(st)

[1 − τn(st)]w(st)

uC ,1(s
t)

Pc(st)
= βR(st)Et

[uC ,1(s
t+1)

Pc(st+1)

]

Q(st+1|st) = βπ(st+1|st)
uC ,1(s

t+1)

uC ,1(st)

Pc(st)

Pc(st+1)
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Government

mingi (st),i∈[0,1]

∫ 1

0
pc

i (s
t)gi (s

t)di

subject to
[

∫ 1

0
gi (s

t)(θ−1)/θdi
]θ/(θ−1)

= G (st)

⇒ gi (s
t) = G (st)

[ pc
i (st)

Pc (st)

]−θ

A government policy consists of {gi (s
t), τ c(st), τn(st),R(st),Mg (st), B̄g (st)}∞t=0
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Firms

Flexible Price Firms (i ∈ [α, 1]):

maxpi (st) pi (s
t)yi (s

t) − w(st)ni (s
t)

subject to

yi,t(s
t) =

[ pc
i (st)

Pc (st)

]−θ
Y (st) & yi,t(s

t) = A(st)ni (s
t)

⇒ pi (s
t) = θ

θ−1
w(st)
A(st) ≡ pf (s

t)

Sticky Price Firms (i ∈ [0, α)):

maxpi (st−1)

∑

st+1|st−1 Q(st+1|st−1)[pi (s
t−1)yi (s

t) − w(st)ni (s
t)]

subject to the same constraints as above.

⇒ pi (s
t−1) = Et−1[v(st)pf (s

t)] ≡ ps(s
t−1)

At t=0, they charge p−1 which is exogenously given.
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Market-Clearing

c1,i (s
t) + c2,i (s

t) + gi (s
t) = A(st)ni (s

t) for each i.

⇒

[

C1(s
t) + C2(s

t) + G (s t)
]

∫ 1

0

[ pc
i (st )

Pc (st )

]−θ
di = A(s t)N(s t)

N(st) =
∫ 1

0
ni (s

t)di

M(st) = Mg (st)

B̄(st) = B̄g (st)

B(st+1) = 0
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Competitive Equilibrium

A competitive equilibrium consists of

Allocations: {C1(s
t),C2(s

t),N(st)}∞t=0, {c1,i (s
t), c2,i (s

t), ni (s
t)}∞t=0 for all i,

and {M(st), B̄(st),B(st+1)}∞t=0.

Prices/Policies: {pi (s
t),Pc(st),w(st),Q(st+1|st),

gi (s
t),G (st), τ c(st), τn(st),Mg (st), B̄g (st),R(st)}∞t=0

such that

the allocation solves the household’s problem given prices/policies.

pi (s
t) solves the firm’s problem given prices/policies.

gi (s
t) solves the government’s problem given pi (s

t),Pc(st), and G (st).

markets clear.
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Two objects of interest

Ωf : The set of implementable allocations for goods and labor

{C1(s
t),C2(s

t),N(st)}∞t=0 when α = 0 (i.e., under flexible prices).

Ωs(α): The set of implementable allocations for goods and labor

{C1(s
t),C2(s

t),N(st)}∞t=0 when 0 < α < 1 (i.e., under sticky prices.)
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Logic: A Big Picture

Show Ωf ⊂ Ωs(α) for any 0 < α < 1

Define ΩR (“relaxed set”) such that Ωf ⊂ Ωs(α) ⊂ ΩR for any 0 < α < 1.

Show optimal allocation in ΩR is in Ωf .

Therefore, optimal allocation in Ωs(α) is in Ωf for any 0 < α < 1.
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Ωf

Proposition 1 (Part 1): Ωf is characterized by

E0

∞
∑

t=0

βt
[

uC ,1(s
t)C1(s

t) + uC ,2(s
t)C2(s

t) + uN(st)N(st)
]

= 0

uC ,1(s
t) ≥ uC ,2(s

t)

C1(s
t) + C2(s

t) + G (st) = A(st)N(st)

Proposition 1 (Part 2): Given Pc(s0), each allocation in Ωf is implemented with a

unique path for {R(st),Mg (st), B̄g (st), 1+τ c (st)
1−τn(st) ,

w(st)
pf (st) , [1 + τ c(st)]pf (s

t)}∞t=0.

Corollary 1: There are multiple combinations of {τ c(st), τn(st),w(st), pf (s
t)}

consistent with each implementable allocation. One of them supports constant

pf (s
t) = P̄ for any P̄ > 0.
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Ωs(α)

Proposition 2 (Part 1): Ωf ⊂ Ωs(α) for any 0 < α < 1.

Proof:

Let pf (s
t) = p−1. Then, ps(s

t−1) = pf (s
t) = p−1. The equilibrium conditions of

the sticky price model collapse to the ones under flexible prices, plus the

restriction that pf (s
t) = p−1.

Proposition 2 (Part 2): Each allocation in Ωf can be implemented with policies

that are independent of α.
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ΩR

The relaxed set ΩR is the set of aggregate allocations {C1(s
t),C2(s

t),N(st)}∞t=0

such that there exist consumer prices {pc
i (s

t),Pc(st)} satisifying:

E0

∞
∑

t=0

βt
[

uC ,1(s
t)C1(s

t) + uC ,2(s
t)C2(s

t) + uN(st)N(st)
]

= 0

uC ,1(s
t) ≥ uC ,2(s

t)
[

C1(s
t) + C2(s

t) + G (st)
]

∫ 1

0

[ pc
i (s

t)

Pc(st)

]−θ
di = A(st)N(st)

Proposition 3 (Part 1): Ωs(α) ⊂ ΩR for any 0 < α < 1 (thus Ωf ⊂ ΩR)

Why? Any allocation in Ωs(α) satisfies the conditions above.
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Ramsey allocations and policies

Proposition 3 (Part 2): Optimal allocation in ΩR is in Ωf .

Proof: Optimal allocation is attained when
∫ 1

0

[ pc
i (st)

Pc (st)

]−θ
di is minimized. This

distortion term is minimized when prices are the same across firms. When that

happens, the conditions collapse to the ones under flexible prices.

Since Ωf ⊂ Ωs(α) ⊂ ΩR , optimal allocation in Ωs(α) is in Ωf for any 0 < α < 1.

Proposition 4: Policies/prices that implement the Ramsey allocation do not

depend on α.
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