Question	Setup	Pareto Optima	Decentralization	Summary

Pareto Optima and Competitive Equilibria with Adverse Selection and Moral Hazard

> Prescott, Townsend, Econometrica 1984 presented by Shengxing Zhang

> > Jan. 2011

Question ●	Setup 00	Pareto Optima	Decentralization	Summary
Questions				

Two general questions which interest me in the paper:

- What are the mechanisms offered by competing principles?
- Do the equilibria achieve pareto optima?

Question O	Setup ●○	Pareto Optima	Decentralization	Summary
Environm	ent			

This presentation focuses on a private information labor market.

- Timing: planning period and execution period ($t \in \{0, 1\}$)
- Players: consumers, manufacturing firms, and brokers.
- One consumption good.
- Production technology: y = al.
- Each broker and firm host infinitely many consumers.
- Consumer preference: U_θ(c, l) is concave in consumption c and labor supply l, θ is a preference shock at t = 1.
- Consumers have no initial endowment.

Question O	Setup ⊙●	Pareto Optima	Decentralization	Summary
Timing				

- Planning period (t = 0):
 - Consumers choose and sign contracts with a broker.
 - Brokers purchase contracts from firms, repackage them and then offer the package to consumers. They compete by offering favorable terms.
 - A competitive market for contingent contracts between firms and brokers.
- Execution period (t = 1):
 - Nature assigns independently type θ to consumers. θ ∈ {1,2}.
 Population of type θ agent is λ_θ.
 - production takes place.
 - contracts carried out.

To allow for random mechanisms, we express allocations in terms of probability distributions, The support of the distributions is discrete $(c, l) \in \{(c_1, l_1), (c_2, l_2), \dots, (c_n, l_n)\} = L$. And for all $(c, l) \in L$

- Consumption: $x_{\theta}(c, I)$, type dependent.
- Endowment: $\xi(c, I)$, which assigns probability 1 to (0, 0).
- production: y(c, I).

Assume for now that there exist prices contingent on type θ , consumption c and labor supply I. Denote the price by $p_{\theta}(c, I)$.

• $U_{\theta}(\tilde{c}_{\theta'}, \tilde{l}_{\theta'}) = \sum_{(c,l)} x_{\theta'}(c, l) U_{\theta}(c, l)$, a linear functional of $x_{\theta'}$.

• the set of feasible contracts are convexified.

 $\begin{aligned} \forall x^{1} &= (x_{\theta}^{1})_{\theta \in \{1,2\}}, x^{2} = (x_{\theta}^{2})_{\theta \in \{1,2\}} \in \mathcal{S}_{IC}, \\ & U_{\theta} \cdot x_{\theta}^{1} \geq U_{\theta} \cdot x_{\theta'}^{1} \\ & U_{\theta} \cdot x_{\theta}^{2} \geq U_{\theta} \cdot x_{\theta'}^{2} \\ & \therefore U_{\theta} \cdot \left(\lambda x_{\theta}^{1} + (1-\lambda) x_{\theta}^{2}\right) \geq U_{\theta} \cdot \left(\lambda x_{\theta'}^{1} + (1-\lambda) x_{\theta'}^{2}\right) \end{aligned}$

Then $\lambda x^1 + (1-\lambda)x^2 \in S_{\mathit{IC}}$, $orall \lambda \in (0,1)$

Question	Setup	Pareto Optima	Decentralization	Summary
		000		
Pareto C)ptima			

$$\max_{x_{\theta}(c,l) \ge 0} \sum_{\theta} \lambda_{\theta} x_{\theta}(c,l) U_{\theta}(c,l)$$

s.t.

$$\begin{split} & \sum_{(c,l)} x_1(c,l) U_1(c,l) \geq \sum_{(c,l)} x_2(c,l) U_1(c,l) & \text{IC1} \\ & \sum_{(c,l)} x_2(c,l) U_2(c,l) \geq \sum_{(c,l)} x_1(c,l) U_2(c,l) & \text{IC2} \\ & \sum_{\theta} \lambda_{\theta} \sum_{(c,l)} x_{\theta}(c,l) al \geq \sum_{\theta} \lambda_{\theta} \sum_{(c,l)} x_{\theta}(c,l) c & \text{feasibility} \\ & \sum_{(c,l)} x_{\theta}(c,l) = 1, \forall \theta \in \{1,2\} \end{split}$$

- A linear programming problem with convex constraint.
- Shadow prices for contingent option, $x_{\theta}(c, I)$, can be solved.
- Pareto optima for other economies can be solved in a similar way using Negishi Algorithm.

Question	Setup	Pareto Optima	Decentralization	Summary
			00000	
Contract	Structure			

- Direct mechanism offered by a broker specifies:
 - report of information from agents
 - recommended actions based on agents' report
 - payoff that depends on reported information, recommended actions, actual information and actual actions.
- Recommendations on unverifiable actions and reports should be incentive compatible.

Question O	Setup 00	Pareto Optima	Decentralization	Summary
Contract	t Structure	- Cont'd		

- The only unverifiable information here is a preference shock at t = 1. So the contract
 - is shock contingent and contains two mutually exclusive options of allocation on consumption and labor supply
 - allows consumers to select the option contingent on their preference shock at t=1
- The contract can be summarized by $\{(\tilde{c}_{\theta}, \tilde{l}_{\theta})\}_{\theta \in \{1,2\}}$, where $(\tilde{c}_{\theta}, \tilde{l}_{\theta})$ can be random variables.

Question O	Setup 00	Pareto Optima	Decentralization ○○●○○○	Summary
Consumers'	problem			

$$\max_{x \in \tilde{X}} \sum_{\theta} \lambda_{\theta} \sum_{(c,l)} x_{\theta}(c,l) U_{\theta}(c,l)$$

$$\bar{X} = \left\{ (x_{\theta}(\cdot, \cdot))_{\theta=1}^{2} : \sum_{\theta} \sum_{(c,l)} p_{\theta}(c,l) x_{\theta}(c,l) \leq \sum_{\theta} \sum_{(c,l)} p_{\theta}(c,l) \xi_{\theta}(c,l) \right\}$$

• Exclusiveness: ex post, contracts restrict agents to only consumption bundles (x₁, 0),or (0, x₂).

Question O	Setup 00	Pareto Optima	Decentralization	Summary
Brokers' pro	oblem			

Brokers sell contracts with shock-contingent options to consumers and buy commitments from firms.

- Expenditure: $\sum_{\theta} \sum_{(c,l)} p_{\theta}(c,l) y(c,l)$
- Revenue: $\sum_{\theta} \sum_{(c,l)} p_{\theta}(c,l) (x(c,l) + \xi(c,l))$

Brokers compete with each other, which implies:

- Pareto optimality
- Zero profit: Revenue = Expenditure.

Functions of brokers:

- Generate information for firms by correlating beliefs with securities provided.
- Make sure the exclusiveness condition is carried out.

- Firms sell to brokers commitments to employing type θ consumer to produce al units of output and deliver c units of consumption.
- Firms' objective:

$$\max_{\{y_{\theta}(c,l)\} \in Y} \sum_{\theta} \sum_{(c,l)} y_{\theta}(c,l) p_{\theta}(c,l)$$
$$Y = \left\{ y = \{y_{\theta}(c,l)\} : \sum_{\theta} \lambda_{\theta} \sum_{(c,l)} y_{\theta}(c,l) (al-c) \ge 0 \right\}$$

• not hard to guess: $p_{\theta}(c, I) = \lambda_{\theta}(c - aI)$.

- A competitive equilibrium given endowment ξ, is allocation bundle ((x^{*}_θ, y^{*})) and a price vector p^{*} for which
 - (i) given p^* , (x^*_{θ}) solves households' problem.
 - (ii) given p^* , y^* solves firms' problem.
 - (iii) given p^* , brokers' problem.
 - (iv) markets clear: $\sum_{\theta} \lambda_{\theta} x_{\theta}^* = y^* + \xi$.
- Brokers can be implicit in the equilibrium, as long as the assumption on exclusiveness is maintained. Condition (iii) can be omitted. Not in general true.

Similar to the situation at t = 1 in the current setup.
 At t = 0:

$$\sum_{\theta} \sum_{(c,l)} p_{\theta}(c,l) x_{\theta}(c,l) = \sum_{\theta} \sum_{(c,l)} p_{\theta}(c,l) \xi_{\theta}(c,l)$$

At
$$t = 1$$
:

$$\sum_{(c,l)} p_{\theta}(c,l) x_{\theta}(c,l) = \sum_{(c,l)} p_{\theta}(c,l) \xi_{\theta}(c,l) + t(\theta), \forall \theta$$

$$\sum_{\theta} \lambda_{\theta} t(\theta) = 0$$

- In general, $t(\theta) \neq 0$. So CE solution here does not apply to the case with ex ante asymmetric information.
- One solution: Bisin Gottardi (2006) on efficient CE with adverse selection.

- tools used in the proof for competitive equilibrium: separating hyperplane theorem.
- tools from cooperative game theory:
 - Core under complete information: Townsend (1978).
 - Cooperative game and core under asymmetric information for exchange economy: Forges, Mertens, Vohra, (2002).
- Green: repeated game approach, grim-trigger strategy...