Fear of Fire Sales and the Credit Freeze
by Diamond and Rajan (forthcoming, QJE)

Saki Bigio

March 2011
Introduction

- Paper is about interbank and C&I lending freeze during crisis.
- Common explanations:
 - Asymmetric information across banks.
 - Extreme to cause full market shut-down.
 - Fear of Bank Run.
 - Resolved by lending facilities.
 - Banks did not use all lending facilities.
In this paper...

- **Strategic behavior** by cash rich banks.
 - Distressed Banks → liquidate assets to meet demand.
 - Fire-sales → investment opportunity for solvent banks.
 - C&I lending may freeze → opportunity cost.
 - Interbank lending may freeze → low prices given future expected fire-sales.

- **Moral-Hazard behavior** by illiquid funds.
 - Selling before trouble is social optimum.
 - Selling before trouble not be private optimum:
 - Why sell cheap today if bailed out tomorrow?
 - If problems tomorrow → limited liability + FDIC insurance.
In this paper...

- **Strategic behavior** by cash rich banks.
 - Distressed Banks \rightarrow liquidate assets to meet demand.
 - Fire-sales \rightarrow investment opportunity for solvent banks.
 - C&I lending may freeze \rightarrow opportunity cost.
 - Interbank lending may freeze \rightarrow low prices given future expected fire-sales.

- **Moral-Hazard behavior** by illiquid funds.
 - Selling before trouble is social optimum.
 - Selling before trouble not be private optimum:
 - Why sell cheap today if bailed out tomorrow?
 - If problems tomorrow \rightarrow limited liability + FDIC insurance.
Agenda

- 3 examples to illustrate mechanism.
Agenda

- 3 examples to illustrate mechanism.
- Striped version of model: no limited liability.
 - No MH behavior.
Agenda

- 3 examples to illustrate mechanism.
- Striped version of model: no limited liability.
 - No MH behavior.
- Striped version of model: limited liability.
 - MH behavior.
Agenda

- 3 examples to illustrate mechanism.
- Striped version of model: no limited liability.
 - No MH behavior.
- Striped version of model: limited liability.
 - MH behavior.
- More structure.
 - To explain lending.
Environment

- 3 periods: $t=0,1,2$.
- **Population**: Liquid and Illiquid Banks.
- **Preferences**: Risk neutral and no discounting.
Environment

- 3 periods: $t=0,1,2$.
- **Population**: Liquid and Illiquid Banks.
- **Preferences**: Risk neutral and no discounting.

Illiquid banks:
- Identical banks with assets worth Z in $t = 2$.
- Banks financed with deposits $D < Z$.
- D withdrawn in $t = 1$ or 2.
Environment

- 3 periods: $t=0,1,2$.
- **Population**: Liquid and Illiquid Banks.
- **Preferences**: Risk neutral and no discounting.

- Illiquid banks:
 - Identical banks with assets worth Z in $t = 2$.
 - Banks financed with deposits $D < Z$.
 - D withdrawn in $t = 1$ or 2.

- Liquid banks:
 - Deep pockets.
Liquidity Shock

- Fraction f of deposits are recalled in $t = 1$.
- Probability q.
- Bank must sell assets to finance withdrawal.
Financing Withdrawals

- Banks can sell assets at $t = 0$.
 - P_o per unit of Z.
- Sell asset at $t = 1$ (conditional on shock).
 - P_1 per unit of Z.
T=0 Financing Demand

- Indifference Condition to buy in \(t = 0 \):

\[
\frac{1}{P_o} Z = q \frac{1}{P_1} Z + (1 - q) Z
\]

thus:

\[
P^\text{bid}_o = \frac{1}{q \frac{1}{P_1} + (1 - q)}
\]
T=0 Financing Demand

- Indifference Condition to buy in $t = 0$:
 \[
 \frac{1}{P_o} Z = q \frac{1}{P_1} Z + (1 - q) Z
 \]
 thus:
 \[
 P^{bid}_o = \frac{1}{q \frac{1}{P_1} + (1 - q)}
 \]

- If $P_o \leq \min(P^{bid}_o, 1)$ infinitely elastic supply of funds.
- If $P_o > \min(P^{bid}_o, 1)$ no lending.
T=0 Financing Demand

- Indifference Condition to buy in $t = 0$:

\[
\frac{1}{P_o}Z = q \frac{1}{P_1}Z + (1 - q) Z
\]

thus:

\[
P_o^{bid} = \frac{1}{q \frac{1}{P_1} + (1 - q)}
\]

- If $P_o \leq \min(P_o^{bid}, 1)$ infinitely elastic supply of funds.
- If $P_o > \min(P_o^{bid}, 1)$ no lending.
- In equilibrium: $P_o \leq 1, P_1 \leq 1$.
\[T=1 \text{ Financing Supply} \]

- Infinitely elastic supply if \(P_1 \leq 1 \).
T=1 Financing Demand

- If shock hits $\eta_1 ZP_1 \geq fD \rightarrow \eta_1 \geq \frac{fD}{ZP_1}$.
T=1 Financing Demand

- If shock hits $\eta_1 ZP_1 \geq fD \rightarrow \eta_1 \geq \frac{fD}{ZP_1}$.
- Payoff from only selling at $t = 1$.

$$q \left[(1 - \eta_1) Z - (1 - f) D \right] + (1 - q) \left[Z - D \right]$$

$$= Z - D - qfD \left(\frac{1}{P_1} - 1 \right)$$

- $\left(\frac{1}{P_1} - 1 \right)$ fire-sale loss.
If shock hits $\eta_1 ZP_1 \geq fD \rightarrow \eta_1 \geq \frac{fD}{ZP_1}$.

Payoff from only selling at $t = 1$.

$$q [(1 - \eta_1) Z - (1 - f) D] + (1 - q) [Z - D]$$

$$= Z - D - qfD \left(\frac{1}{P_1} - 1 \right)$$

$$\left(\frac{1}{P_1} - 1 \right)$$ fire-sale loss.

Assumption 1: Unlimited liability or Always Solvent.
$T=0$ Financing Demand

- Time 0 sales: $\eta_0 ZP_0 \geq fD$.
\(T=0 \) Financing Demand

- Time 0 sales: \(\eta_0 Z P_0 \geq fD. \)
- Payoff \(t = 0 \) selling:
 \[
 (Z - D) - fD \left[\frac{1}{P_0} - 1 \right]
 \]
- Recall Payoff \(t = 1 \) selling:
 \[
 (Z - D) - qfD \left(\frac{1}{P_1} - 1 \right)
 \]
- Indifference condition:
 \[
 P_o^{ask} = \frac{1}{q \frac{1}{P_1} + (1 - q)}
 \]
Equilibria I

- Equilibrium is indeterminate.
 - $P_1 = P_0 = 1$.
 - Quantities indeterminate.
- Why?
+ Limited Liability

- Insolvency → Limited liability → only internal funds used.
- FDIC guarantees deposits.
Proposition

Under LL, bank is liquidated upon liquidity shock. Bank never sells in \(t=0 \) even if it may become solvent by selling at \(t = 0 \). No trade occurs at \(t = 0 \).

▶ Why?
More Structure

- Finite pockets: liquid banks θ amount of cash.
 - Opportunity cost $\rightarrow I(R)$ downward sloping exogenous funds.
 - $I(1) = \bar{I}$.
 - Why? Induces interesting price effects.
More Structure

- Finite pockets: liquid banks θ amount of cash.
 - Opportunity cost $\rightarrow I(R)$ downward sloping exogenous funds.
 - $I(1) = \bar{I}$.
 - Why? Induces interesting price effects.

- Assume liquid banks can liquidate loans.
 - β fraction of securities.
 - $(1 - \beta)$ fraction of loans.
 - Face value is Z.
 - Liquidation values $x \sim U[0, Z]$.
 - Why? insolvency.
Timing

<table>
<thead>
<tr>
<th>Bank Type</th>
<th>t=0</th>
<th>t=1</th>
<th>t=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illiquid Banks</td>
<td>Sell Securities</td>
<td>Loan Liquidation</td>
<td>Loans pay-off, dividends</td>
</tr>
<tr>
<td>Liquid Banks</td>
<td>Purchase of Securities, Loans or Cash</td>
<td>Purchase of Loans</td>
<td>Loans pay-off, dividends</td>
</tr>
</tbody>
</table>

(shocks arrive)
Which loans are sold?

Convenient for bank to sell assets with value $x \geq P_1Z$.

Thus, bank can raise:

$$\frac{1}{Z} \int_{P_1Z}^{Z} x\,dx = \frac{Z}{2} \left(1 - (P_1)^2\right)$$
Efficient equilibria

- Efficient Equilibria
- \(\theta - \bar{I} = \theta - I \quad (1) \geq fD \rightarrow P_1 = P_0 = 1. \)
Inefficient equilibria

- Inefficient equilibria: \(\theta - \bar{l} < fD \).
- Date 1 cash needs:
 \[
 (1 - \beta) \frac{Z}{2} \left(1 - (P_1)^2 \right) + \left[\theta - l \left(\frac{1}{P_o} \right) \right] = fD
 \]
- Price indifference condition:
 \[
 P_{o}^{Ask} = \frac{1}{q \frac{1}{P_1} + (1 - q)}
 \]
- Conditions pin-down prices.
- Bank solvency:
 \[
 (1 - \beta) P_1 Z \cdot P_1 + (1 - \beta) \frac{Z}{2} \left(1 - (P_1)^2 \right) + \beta P_2 Z > (1 - f) DP_1 + fD
 \]
Results

1. $\uparrow f, \uparrow D \text{ or } \downarrow \theta \rightarrow \downarrow P_0 \text{ and } \downarrow P_1$.
2. $\uparrow q \rightarrow \downarrow P_0 \text{ and } \uparrow P_1$.
3. $\uparrow f, \uparrow D, \uparrow q \text{ or } \downarrow \theta \rightarrow \text{Time 0 lending.}$
Bank Runs

- Assume that insolvency implies all agents withdraw D.
Example Prices
Example Lending