Bubbles and Crashes
Abreu and Brunnermeier

Discussion by Michal Szkup

NYU

April 2011
Introduction

The goal of this paper is to show that:

- even in the presence of rational arbitrageurs a bubble may exists for a long time;
- bubble may exists even though enough agents are aware of it and would be able to burst it if they act collectively;
- lack common knowledge assumption is crucial for existence of bubbles;
- in such environment, news may have disproportional impact on market compared to their information content.
Model (Price Process)

- Price process is assumed to be exogenous;
- At time $t = 0$ the price is $p_0 = 1$;
- From $t = 0$ onwards, price grows at rate g, $p_t = e^{gt}$;
- Until the time t_0 the price is justified by fundamentals;
- For any $t > t_0$, only a fraction $1 - \beta (t - t_0)$ of the price is justified by fundamentals;
- t_0 is a random variable with exponential distribution, $\Phi (t_0) = 1 - e^{-\lambda t_0}$;
- The price process is assumed to be driven by behavioral traders;
The bubble will burst for exogenous reasons at $t_0 + \tau$;
 ▶ in that case the price drops to $(1 - \beta) p(t)$;

Or if the selling pressure exceeds level κ.
 ▶ in this case the price drops to $(1 - \beta (t - t_0)) p(t)$;
Model (Arbitrageurs)

- There is mass 1 of rational, risk-neutral agents (arbitrageurs);
- These arbitrageurs become sequentially aware of the bubble;
- At each $t_0 < t < t_0 + \eta$ a mass $\frac{1}{\eta}$ of arbitrageurs becomes aware of mispricing;
- Arbitrageurs do not observe t_0 and don’t know how many of others observed signal;
Model (Arbitrageurs)

- Type of arbitrageur is $t_i \in [t_0, t_0 + \eta]$, the time he received the news;
- Arbitrageurs choose their holding of a stock in $[0, 1]$, where 1 is the maximum short position they can take;
- Every time an arbitrageur changes his position he incurs a cost ce^{rt};
- We refer to arbitrageurs position as his selling pressure.
- $\Pi(t|t_i)$ is the belief of type t_i that the bubble burst before time t.

Abreu and Brunnermeier (2003) Bubbles and Crashes 04/11 6 / 16
Model (Strategies)

- Let $\sigma(t, t_i)$ denote the selling pressure of arbitrageur t_i at time t.
- A strategy of an arbitrageur i is given by $\sigma(\cdot, t_i): [0, t_i + \bar{\tau}] \to [0, 1]$;
 $$\min\{t, t_0 + \bar{\tau}\}$$
- The aggregate selling pressure is $s(t, t_0) = \int_{t_0}^{\min\{t, t_0 + \bar{\tau}\}} \sigma(t, t_i) \, dt_i$
- We say that there is a bubble if κ of arbitrageurs are aware of mispricing;
 - this happens at time $t_0 + \kappa \eta$;
- The time that bubble burst is then
 $$T^*(t_0) = \inf \{t \mid s(t, t_0) \geq \kappa \text{ or } t = t_0 + \bar{\tau}\}$$
Summary of the model

\[p_t = e^{gt} \]

\[(1 - \beta(t - t_0))p_t \]

- \(t_0 \) to \(t_0 + \eta \): random starting point, \(K \) traders are aware of the bubble
- \(t_0 + \eta \) to \(t_0 + \bar{\eta} \): all traders are aware of the bubble
- \(t_0 + \bar{\eta} \): bubble bursts for exogenous reasons

maximum life-span of the bubble \(\bar{\tau} \)
Trading equilibrium and Preliminary Results

Definition

A trading equilibrium is a Perfect Bayesian Equilibrium such that if \(\sigma(t, t_i) > 0 \) arbitrager \(t_i \) believes \(\sigma(t, t_j) > 0 \) for all \(t_j < t_i \).

Lemma

1. \(\sigma(t, t_i) \in \{0, 1\} \)
2. \(\sigma(t, t_i) = 1 \Rightarrow \sigma(t, t_j) = 1 \) for all \(t_j < t_i \) and \(\sigma(t, t_i) = 0 \Rightarrow \sigma(t, t_j) = 0 \) for all \(t_j > t_i \)
3. Arbitrageurs use trigger strategies, once they go short (at \(T(t_i) \)) \(\forall t > T(t_i) \) they keep their position \(\sigma(t, t_i) = 1 \).
Sell Out Condition

- The expected payoff to arbitrageur t_i from selling out at time t is given by

$$\int_{t_i}^{t} e^{-rs} \left[1 - \beta \left(s - T^{*-1}(s) \right) \right] p(s) \pi(s|t_i) \, ds + e^{-rt} p(t) \left(1 - \Pi(t|t_i) \right)$$

- Arbitrageurs will keep maximum short position if

$$\frac{\pi(t|t_i)}{(1 - \Pi(t|t_i))} > \frac{g - r}{\beta (t - T^{*-1}(t))}$$

- and maximum long position otherwise.
Persistence of Bubbles

- Under the common knowledge of bubble there is unique equilibrium in which bubble burst immediately.
- In this model existence of bubble is never a common knowledge:
 - arbitrageurs become sequentially informed.
 - they don’t know their position in "line".
 - this breaks common knowledge in the model.
- If κ or η is large enough, then we can show that bubble will always persist for some time;
- That is there is no equilibrium in which all arbitrageurs sell their stocks at the moment they receive the news.
Persistent of Bubbles (exogenous crash)

This is true if

\[t_0 + \eta \kappa + \tau^1 > t_0 + \bar{\tau} \]
Persistent of Bubbles (endogenous crash)

- Otherwise, bubble will burst for endogenous reasons

- If κ, η or $g - r$ are large enough then each arbitrageur waits for a strictly positive period of time

- Hence, the bubble burst at $\tau^* > 0$
Impact of news

- At the heart of the problem is the coordination problem between arbitrageurs;
- A public news may act like a coordination device;
- Hence even if the news have little informative content it may lead to a market crash.
Conclusions

- Presence of rational, fully informed arbitrageurs do not preclude existence of bubble;
- A bubble may last for a long time even if agents are aware of it;
- This is possible due to lack of common knowledge;
- News can have large impact on behavior of agents by acting like a coordination device.
Appendix (News)

- News arrive with Poisson arrival rate θ;
- They are uninformative and serve only as a coordination device;
- They are observed only by traders who are aware of the bubble for time interval τ_e;
- "News" leads to multiplicity of equilibria;
- There is an equilibrium such that:
 - all arbitrageurs who observe the news sell out;
 - if the bubble burst they stay out of the market;
 - if the bubble doesn’t burst they re-enter the market.

Abreu and Brunnermeier (2003) Bubbles and Crashes