Asset Pricing in a Production Economy with Chew-Dekel Preferences

Claudio Campanale, Rui Castro, and Gian Luca Clementi

Presentation by Matt Smith

Feb 2, 2010

Claudio Campanale, Rui Castro, and Gian Luca Clementi Asset Pricing in a Production Economy with Chew-Dekel Prefere

直 ト イヨト イヨト

Goal: Generate realistic asset prices (moments) along with quantities in a production economy Difficulties:

- Endogenous variables
- Multiple channels to smooth consumption
- Marginal product of capital doesnt look like asset returns (not volatile enough)

Early Progress: Jermann (1998), Boldrin, Christiano, Fisher (2001), Tallarini (2000)

This Paper: Use Disappointment Aversion in a production economy

伺 ト く ヨ ト く ヨ ト

Disappointment Aversion Primer

Finite Set of payoffs

 $\{x_1,\ldots,x_N\}$

Expected Utillity Certainty Equivalent:

$$u(\mu) = \sum_{i=1}^{N} \pi_i u(x_i)$$

Disappointment Aversion Certainty Equivalent:

$$u(\mu) = \sum_{i=1}^{N} \pi_i u(x_i) - \theta \sum_{x_i \le \mu} \pi_i (u(\mu) - u(x_i))$$
$$= \sum_{i=1}^{N} \tilde{\pi}_i u(x_i)$$
$$\tilde{\pi}_i = \pi_i \frac{1 + \theta I(x_i, \mu)}{1 + \theta \sum_{x_i \le \mu} \pi_i}$$

Disappointment Aversion Indifference Curves

Claudio Campanale, Rui Castro, and Gian Luca Clementi Asset Pricing in a Production Economy with Chew-Dekel Prefere

→ Ξ → < Ξ</p>

Consider the following gamble: Initial wealth w_0 $\frac{u''(w_0)w_0}{u'(w_0)} = \eta - 1$ Payoff $w_0(1 - \kappa)$ or $w_0(1 + \kappa)$ each with equal probability Risk Premium, $P(\kappa)$ solves

$$\frac{1+\theta}{2+\theta}u(w_0(1-\kappa)) + \frac{1}{2+\theta}u(w_0(1+\kappa)) = u(w_0(1-P(\kappa)))$$

Taylor Expansion:

$$P(k) = rac{ heta}{2+ heta} d\kappa + rac{1}{2}(1-\eta) \left[rac{4(1+ heta)}{(2+ heta)^2}
ight] d\kappa^2$$

What we'll see: at levels of κ faced by agents in the economy, a little θ substitutes for a lot of η

CES Time Aggregator:

$$v(S_t) = [C_t^{\gamma} + \beta \mu^{\gamma}(S_t)]^{\frac{1}{\gamma}}$$

Risk Aggregator:

$$\begin{split} \mu^{\eta}(S_t) &= \sum_{S_{t+1}} \pi(S_{t+1}|S_t) v^{\eta}(S_{t+1}) \\ &- \theta \sum_{S_{t+1} \in \Delta_{t+1}} \pi(S_{t+1}|S_t) (\mu^{\eta}(S_t) - v^{\eta}(S_{t+1})) \\ \Delta_{t+1} &= \{S_{t+1} : v(S_{t+1}) < \mu(S_t)\} \end{split}$$

$\begin{array}{l} \mathsf{Cases} \\ \theta = 0, \gamma = \eta \rightarrow \mathsf{Expected Utillity} \\ \theta = 0, \gamma \neq \eta \rightarrow \mathsf{Kreps}\text{-}\mathsf{Porteus}/\mathsf{Epstein}\text{-}\mathsf{Zin} \\ \theta > 0 \rightarrow \mathsf{Disappointment Aversion} \end{array}$

(*) *) *) *)

Technology

$$y_t = k_t^{\alpha} (z_t l_t)^{1-\alpha}$$

$$z_t = e^{\lambda t + \epsilon_t}$$

$$\epsilon_{t+1} = \rho \epsilon_t + \xi_{t+1}$$

$$\xi_{t+1} \sim N(0, \sigma^2)$$

Capital Accumulation

$$e^{\varphi}k_{t+1} = x_t + (1-\delta)k_t$$

Aggregate resource constraint

$$y_t = c_t + x_t + g(k_t, k_{t+1})$$

Adjustment Costs

$$g(k_t, k_{t+1}) = \left| e^{\lambda + arphi} rac{k_{t+1}}{k_t} - \psi
ight|^{\iota} k_t$$

Labor fixed $I_t = I$

Claudio Campanale, Rui Castro, and Gian Luca Clementi Asset Pricing in a Production Economy with Chew-Dekel Prefere

A B M A B M

3

Planners Problem

s.t

$$\mathbf{v}(\mathbf{k},\epsilon) = \max_{\mathbf{k}'} \left\{ \mathbf{c}^{\gamma} + \beta \mathbf{e}^{[\varphi+\gamma\lambda]} \mu[\mathbf{v}(\mathbf{k}',\epsilon')]^{\gamma} \right\}^{\frac{1}{\gamma}}$$

-

3

$$c + e^{\lambda + \varphi} k' = k^{\alpha} (e^{\epsilon} I)^{1 - \alpha} + (1 - \delta) k - \left| e^{\lambda + \varphi} \frac{k'}{k} - \psi \right|^{\iota} k$$

$$\epsilon' = \rho \epsilon + \xi'$$

$$\xi' \sim N(0, \sigma^2)$$

where $\mu = \mu[v(k',\epsilon')]$ solves:

$$\mu^{\eta} = E \left\{ \frac{(1 + \theta I(k', \epsilon', \mu)) v^{\eta}(k', \epsilon')}{1 + \theta E[I(k', \epsilon', \mu)]} \right\}$$
$$I(k', \epsilon', \mu) = \frac{1}{0, \text{ otherwise}}$$

Asset Prices, definitions

Risk Free Rate:

$$\sum_{i} \pi(\epsilon_{i}|\epsilon) m(\epsilon_{i}|k,\epsilon) R^{f}(k,\epsilon) = 1$$

Stochastic Discount Factor:

$$m(\epsilon_i|k,\epsilon) = \beta e^{\lambda(\gamma-1)} \left[\frac{1+\theta I(k',\epsilon_i,\mu)}{1+\theta \sum_i \pi(\epsilon_i|\epsilon) I(k',\epsilon_i,\mu)} \right] \left[\frac{c(k',\epsilon_i)}{c(k,\epsilon)} \right]^{\eta-1} \left[\frac{v(k',\epsilon_i)/\mu(k',\epsilon)}{c(k',\epsilon_i)/c(k,\epsilon)} \right]^{\eta-\gamma}$$

Gross Return on Equity:

$$\mathsf{R}^{\mathsf{e}}(k,\epsilon,\epsilon_{i}) = \frac{\alpha k'^{(\alpha-1)} (\mathsf{e}^{\epsilon_{i}} l)^{(1-\alpha)} + (1-\delta) - \frac{\partial}{\partial k'} g(k',k''(k',\epsilon_{i}))}{1 + \mathsf{e}^{-(\lambda+\varphi)} \frac{\partial}{\partial k'} g(k,k')}$$

Claudio Campanale, Rui Castro, and Gian Luca Clementi Asset Pricing in a Production Economy with Chew-Dekel Prefere

< ∃ >

Calibration Parameters

Parameter	DA	ΕZ
η	0.5	-55
γ	-28	-21
θ	0.25	0
ι	1.23	1.26?
α	0.36	same
δ	0.015	same
λ	0.00387	same
φ	0.00298	same
β^*	0.9919	same
ho	0.95	same
σ	0.0164	same

□ ▶ ▲ 臣 ▶ ▲ 臣

Quantitity IRFS with DA

Fig. 1. Impulse responses of quantities - percentage deviations from trend.

Claudio Campanale, Rui Castro, and Gian Luca Clementi Asset Pricing in a Production Economy with Chew-Dekel Prefere

イロト イポト イヨト イヨト

Э

Pricing IRFS with DA

Fig. 2. Impulse responses of financial variables.

< 3

< 🗇 🕨 < 🖃 🕨

3

Moment	Data	DA	EZ
$E(r^{f})$	1.008%	1.182%	1.146%
$\operatorname{Std}(r^f)$	1.668%	4.457%	3.352%
$E(r^e - r^f)$	7.572%	6.838%	4.4848%
$\operatorname{Std}(r^e - r^f)$	15.16%	20.309%	15.323%
Sharpe Ratio	0.499		
MPR		.34	.384

Claudio Campanale, Rui Castro, and Gian Luca Clementi Asset Pricing in a Production Economy with Chew-Dekel Prefere

→ 3 → 4 3

P.

Slide for Comparative Statics with DA

Fig. 3. Comparative statics. Statistics are annualized.

- 4 同 ト 4 目 ト 4 目 ト

Э

Slide for Comparative Statics with EZ

- 4 回 2 - 4 □ 2 - 4 □

Э

Compare Certainty equivalent for a Disappointment Aversion $(\theta,\eta=1/2)$ vs Certainty Equivalent EU (η)

$$\left[\frac{1+\theta}{2+\theta}\sqrt{1-\kappa} + \frac{1}{2+\theta}\sqrt{1+\kappa}\right]^2 = \left[\frac{1}{2}(1-\kappa)^{\eta} + \frac{1}{2}(1+\kappa)^{\eta}\right]^{1/\eta}$$

同下 イヨト イヨト ニヨ

DA vs RA Picture

Fig. 7. Comparison between risk preferences.

イロト イロト イヨト イヨト

E

- Able to generate fairly reasonable asset pricing moments with either DA or EZ
- DA parameterization consistent with experimental evidence, EZ is not
- Constant labor supply helps

→ ∃ > < ∃ >