“Redistribution, taxes, and the median voter”

Review of Economic Dynamics 2006

by Marco Bassetto and Jess Benhabib
Motivation

• Ideally we would wish to study a model in which households, with heterogeneous wealth distributions, choose a sequence of redistributive tax rates through voting.

• The problem arises that the agents are voting over a sequence of tax rates, and thus the space we are dealing with is infinite dimensional.

• The infinite dimensional space means that the usual single-peakedness assumption for the median voter theorem cannot be used.
Aim of The Paper

- This paper solves the problem proving that when preferences are identical and Gorman aggregable a Condorcet winner exists.
- Furthermore they show that under these assumptions the policy chosen will have the “bang-bang” property, i.e. capital income taxes remain at the upper bound until they drop to 0.
- This condenses a multi-dimensional problem into just a single choice of an optimal stopping time.
Assumptions

- Output y_t is produced by competitive firms with a linearly homogeneous production function

$$y_t = F(k_t, l_t)$$ where capital depreciates fully
Assumptions

- Output y_t is produced by competitive firms with a linearly homogeneous production function

$$y_t = F(k_t, l_t)$$

where capital depreciates fully

- We have a continuum of agents, indexed by i. In the initial period they each own a wealth level W_0^i.

Assumptions

- Output y_t is produced by competitive firms with a linearly homogeneous production function

$$y_t = F(k_t, l_t)$$

where capital depreciates fully.

- We have a continuum of agents, indexed by i. In the initial period they each own a wealth level W_0^i.

- In each period the government levies non-negative proportional taxes on labor income ν_t and capital income τ_t (which is subject to upper bound $\bar{\tau}$). It uses this income and one period debt to pay off an exogenous sequence $\{g_t\}$ and to finance lump sum transfer T_t, giving us the budget constraint

$$\tau_t r_t (k_t + b_t) + \nu_t w_t + b_{t+1} = r_t b_t + g_t + T_t$$
The Household

- We assume that the household’s preferences over the consumption stream \(\{c_t^i\} \) is given by \(\sum_{t=0}^{\infty} \beta^t u(c_t^i) \), where

\[
u(c) = \frac{\sigma}{1-\sigma} \left(\frac{A}{\sigma} c + B \right)^{1-\sigma}\]
The Household

- We assume that the household’s preferences over the consumption stream \(\{c_t^i\} \) is given by \(\sum_{t=0}^{\infty} \beta^t u(c_t^i) \), where

\[
u(c) = \frac{\sigma}{1 - \sigma} \left(\frac{A}{\sigma} c + B \right)^{1-\sigma}\]

- The household supplies labor inelastically and maximizes its utility subject to the period-by-period budget constraint

\[
(1 - \tau_t) r_t W_t^i + (1 - \nu_t) w_t + T_t \geq c_t^i + W_{t+1}^i
\]

(under no arbitrage) and imposing no ponzi-schemes.
The Household

• We assume that the household’s preferences over the consumption stream \(\{c_t^i\} \) is given by \(\sum_{t=0}^{\infty} \beta^t u(c_t^i) \), where

\[
u(c) = \frac{\sigma}{1-\sigma} \left(\frac{A}{\sigma} c + B \right)^{1-\sigma}
\]

• The household supplies labor inelastically and maximizes its utility subject to the period-by-period budget constraint

\[(1 - \tau_t) r_t \mathcal{W}_t^i + (1 - \nu_t) w_t + T_t \geq c_t^i + \mathcal{W}_{t+1}^i \]

(under no arbitrage) and imposing no ponzi-schemes.

• We can thus write the budget constraint in present value form

\[
\sum_{t=0}^{\infty} \beta^t c_t q_t (1 + \theta_t) = \mathcal{W}_0^i + \sum_{t=0}^{\infty} (T_t + w_t (1 - \nu_t)) \beta^t q_t (1 + \theta_t)
\]

with \(q_t := \beta^{-t} \prod_{s=0}^{t} (r_s)^{-1} \) and \(1 + \theta_t := \prod_{s=0}^{t} (1 - \tau_s)^{-1} \)
Competative Equilibrium

Definition

A competitive equilibrium is

\[
\{\{c_s, k_s, b_s, \tau_s, \nu_s, T_s, r_s, w_s, \{c^i_s, W^i_s\}\}\}_{s=0}^{\infty}
\]

such that

(1) Households are maximizing subject to budget constraints.
Competitive Equilibrium

Definition

A competitive equilibrium is

\[\{\{c_s, k_s, b_s, \tau_s, \nu_s, T_s, r_s, w_s, \{c^i_s, W^i_s\}\}\}_{s=0}^{\infty} \]

such that

1. Households are maximizing subject to budget constraints.

2. Factor prices are equal to marginal products:
 \[r_t = F_k(k_t, 1) \text{ and } w_t = F_l(k_t, 1). \]
Competative Equilibirum

Definition

A competitive equilibrium is

$$\left\{ \left\{ c_s, k_s, b_s, \tau_s, \nu_s, T_s, r_s, w_s, \{ c_i^i, W_i^i \} \right\} \right\}_{s=0}^{\infty}$$

such that

1. Households are maximizing subject to budget constraints.

2. Factor prices are equal to marginal products:
 $$r_t = F_k(k_t, 1) \text{ and } w_t = F_l(k_t, 1).$$

3. Markets clear
 $$\int c_t^i di = c_t \text{ and } \int W_t^i di = k_t + b_t$$

Existence

Theorem
For any sequence \(\{c_s, k_s\}_{s=0}^{\infty}\), there exists a competitive equilibrium if and only if the sequence satisfies

1.
\[k_{t+1} + c_t + g_t = F(k_t, 1) \]

2.
\[(F_k(k_{t+1}, 1)(1 - \bar{\tau}))^{-1} \leq \frac{\beta^t u'(c_{t+1})}{u'(c_t)} \leq (F_k(k_{t+1}, 1))^{-1} \]
Existence Proof Sketch

- We start by setting \(r_t, w_t \) marginal products and choose taxes

\[
(1 - \tau_{t+1})^{-1} = \frac{\beta r_{t+1} u'(c_{t+1})}{u'(c_t)} = \frac{1 + \theta_{t+1}}{1 + \theta_t}
\]

Choose \(\{\nu_t, T_t, b_{t+1}\} \) to satisfy government constraint.
Existence Proof Sketch

- We start by setting \(r_t, w_t \) marginal products and choose taxes

\[
(1 - \tau_{t+1})^{-1} = \frac{\beta r_{t+1} u'(c_{t+1})}{u'(c_t)} = \frac{1 + \theta_{t+1}}{1 + \theta_t}
\]

Choose \(\{\nu_t, T_t, b_{t+1}\} \) to satisfy government constraint.

- The household first order condition, plus iteration, then gives us

\[
\frac{A \left(\frac{A}{\sigma} c_t^i + B \right)^{-\sigma}}{A \left(\frac{A}{\sigma} c_0^i + B \right)^{-\sigma}} = \frac{q_t(1 + \theta_t)}{1 + \theta_0} = \frac{A \left(\frac{A}{\sigma} c_t + B \right)^{-\sigma}}{A \left(\frac{A}{\sigma} c_0 + B \right)^{-\sigma}}
\]
Existence Proof Sketch

- We start by setting r_t, w_t marginal products and choose taxes

$$(1 - \tau_{t+1})^{-1} = \frac{\beta r_{t+1} u'(c_{t+1})}{u'(c_t)} = \frac{1 + \theta_{t+1}}{1 + \theta_t}$$

Choose $\{\nu_t, T_t, b_{t+1}\}$ to satisfy government constraint.

- The household first order condition, plus iteration, then gives us

$$A \left(\frac{A}{\sigma} c^i_t + B \right)^{-\sigma} = \frac{q_t (1 + \theta_t)}{1 + \theta_0} = \frac{A \left(\frac{A}{\sigma} c_t + B \right)^{-\sigma}}{A \left(\frac{A}{\sigma} c_0 + B \right)^{-\sigma}}$$

- From this we can conclude that

$$\frac{A}{\sigma} c^i_t + B = \alpha^i \left(\frac{A}{\sigma} c_t + B \right)$$

we choose α to satisfy house holds budget constraint. The paper then proves that $\int \alpha^i di = 1$ and hence $\int c^i_t di = c_t$
Preferences over equilibria

We can’t use single peakness to give us a Condorcet winner, but we will use the Gorman aggregation to simplify the households preferences over equilibria.
Preferences over equilibria

We can’t use single peakness to give us a Condorcet winner, but we will use the Gorman aggreagation to simplify the households preferences over equilibria.

Lemma

For each household i there exists a function $G : \mathbb{R}^4 \to \mathbb{R}$ such that the utility of the household in a competitive equilibrium is $G(V, c_0, \tau_0, W_0^i - W_0)$ where $V = \sum_{t=0}^{\infty} \beta^t u(c_t)$. Also,

$$\text{sign} \left(\frac{\partial G}{\partial c_0} \right) = \text{sign} \left(\frac{\partial G}{\partial \tau_0} \right) = \text{sign}(W_0 - W_0^i)$$
Sketch of Proof

- We begin by subtraction the average budget constraint from the household’s constraint to get

\[
\sum_{t=0}^{\infty} \beta^t (c_t^i - c_t) \left(\frac{A}{\sigma} c_t + B \right)^{-\sigma} = r_0 (1 - \tau_0) (W_0^i - W_0) \left(\frac{A}{\sigma} c_0 + B \right)^{-\sigma}
\]
Sketch of Proof

- We begin by subtraction the average budget constraint from the household’s constraint to get

\[\sum_{t=0}^{\infty} \beta^t (c^i_t - c_t) \left(\frac{A}{\sigma} c_t + B \right)^{-\sigma} = r_0 (1 - \tau_0) (W^i_0 - W_0) \left(\frac{A}{\sigma} c_0 + B \right)^{-\sigma} \]

- Substituting our aggregation equation and then solving for \(\alpha_i \) we obtain

\[\alpha^i = 1 + \frac{A r_0 (1 - \tau_0) (W^i_0 - W_0) (\frac{A}{\sigma} c_0 + B)^{-\sigma}}{V(1 - \sigma)} \]
Sketch of Proof

- We begin by subtraction the average budget constraint from the household’s constraint to get

$$
\sum_{t=0}^{\infty} \beta^t (c_t^i - c_t) \left(\frac{A}{\sigma} c_t + B \right)^{-\sigma} = r_0 (1 - \tau_0) (W_0^i - W_0) \left(\frac{A}{\sigma} c_0 + B \right)^{-\sigma}
$$

- Substituting our aggregation equation and then solving for α_i we obtain

$$
\alpha^i = 1 + \frac{A r_0 (1 - \tau_0) (W_0^i - W_0) (\frac{A}{\sigma} c_0 + B)^{-\sigma}}{V(1 - \sigma)}
$$

- Thus we can get a formula for G as follows

$$
G = (\alpha^i)^{1-\sigma} V = \left[1 + \frac{A r_0 (1 - \tau_0) (W_0^i - W_0) (\frac{A}{\sigma} c_0 + B)^{-\sigma}}{V(1 - \sigma)} \right]^{1-\sigma} V
$$
The Median Voter

Theorem

The tax sequence preferred by the household with median wealth is a Condorcet winner
The Median Voter

Theorem

The tax sequence preferred by the household with median wealth is a Condorcet winner

- Consider two equilibria given by \(\{c_t\}, \tau_0 \) and \(\{\hat{c}_t\}, \hat{\tau}_0 \). We can define

\[
H := \left\{ W^i_0 : G(V, c_0, \tau_0, W^i_0 - W_0) \geq G(\hat{V}, \hat{c}_0, \hat{\tau}_0, W^i_0 - W_0) \right\}
\]

as households \(W^0_i \) who (weakly) prefer the first equilibria similarly

\[
\hat{H} := \left\{ W^i_0 : G(\hat{V}, \hat{c}_0, \hat{\tau}_0, W^i_0 - W_0) \geq G(V, c_0, \tau_0, W^i_0 - W_0) \right\}
\]
The Median Voter cont.

- One can show that the sign of the derivative of

$$\ln \left(\frac{G(V, c_0, \tau_0, W_0^i - W_0)}{G(\hat{V}, \hat{c}_0, \hat{\tau}_0, W_0^i - W_0)} \right)$$

is independent of W_0^i and thus there exists a W_0^* such that for all $W_0^i \leq W_0^*$ we have W_0^i belongs to one of \hat{H} or H and if $W_0^i \geq W_0^*$ then it belongs to the other.
The Median Voter cont.

- One can show that the sign of the derivative of

\[
\ln \left(\frac{G(V, c_0, \tau_0, W_i^0 - W_0)}{G(\hat{V}, \hat{c}_0, \hat{\tau}_0, W_i^0 - W_0)} \right)
\]

is independent of \(W_i^0 \) and thus there exists a \(W_0^* \) such that for all \(W_i^0 \leq W_0^* \) we have \(W_i^0 \) belongs to one of \(\hat{H} \) or \(H \) and if \(W_i^0 \geq W_0^* \) then it belongs to the other.

- Thus whichever preference the median voter has, it is the same as the majority.
"Bang-Bang" Tax Policy

We begin by assuming that the median voter’s wealth W_0^m is below the mean and show the following theorem.

Theorem

The capital tax sequence $\{\tau_t\}_{0}^{\infty}$ preferred by the median voter has the bang-bang property: if $\tau_t < \bar{\tau}$ then $\tau_s = 0$ for $s > t$.
“Bang-Bang” Tax Policy

We begin by assuming that the median voter’s wealth W_0^m is below the mean and show the following theorem

Theorem

The capital tax sequence $\{\tau_t\}_{0}^{\infty}$ preferred by the median voter has the bang-bang property: if $\tau_t < \bar{\tau}$ then $\tau_s = 0$ for $s > t$.

- We first note that our lemma implies that the initial tax will be $\bar{\tau}$.
“Bang-Bang” Tax Policy

We begin by assuming that the median voter’s wealth W_0^m is below the mean and show the following theorem

Theorem

The capital tax sequence $\{\tau_t\}_{0}^{\infty}$ preferred by the median voter has the bang-bang property: if $\tau_t < \bar{\tau}$ then $\tau_s = 0$ for $s > t$.

- We first note that our lemma implies that the initial tax will be $\bar{\tau}$.
- We then split the theorem into cases where G is increasing, decreasing or constant in V.
“Bang-Bang” Tax Policy

We begin by assuming that the median voter’s wealth W^m_0 is below the mean and show the following theorem.

Theorem

*The capital tax sequence $\{\tau_t\}_{0}^{\infty}$ preferred by the median voter has the bang-bang property: if $\tau_t < \bar{\tau}$ then $\tau_s = 0$ for $s > t$.***

- We first note that our lemma implies that the initial tax will be $\bar{\tau}$.
- We then split the theorem into cases where G is increasing, decreasing or constant in V.
- In each case we will use our theorem to construct a new equilibrium from a modified $\{c_t, k_t\}$.
We begin by assuming that the median voter’s wealth W^m_0 is below the mean and show the following theorem

Theorem

The capital tax sequence $\{\tau_t\}_{0}^{\infty}$ preferred by the median voter has the bang-bang property: if $\tau_t < \bar{\tau}$ then $\tau_s = 0$ for $s > t$.

- We first note that our lemma implies that the initial tax will be $\bar{\tau}$.
- We then split the theorem into cases where G is increasing, decreasing or constant in V.
- In each case we will use our theorem to construct a new equilibrium from a modified $\{c_t, k_t\}$
- When G is decreasing or constant taxes will be at their upper bound for all periods
Increasing in V

- Let t be the first period where $\tau_t \neq \bar{\tau}$ and assume that $\tau_s \neq 0$ for some $s > t$.

David Evans
Increasing in V

- Let t be the first period where $\tau_t \neq \bar{\tau}$ and assume that $\tau_s \neq 0$ for some $s > t$.
- If we wanted to maximize V we would set $\tau_0 = \bar{\tau}$ and $\tau_t = 0$ for all $t \geq 1$ thus we can conclude that this equilibrium does not maximize

$$
\sum_{s=t+1}^{\infty} \beta^s \frac{\sigma}{1-\sigma} \left(\frac{A}{\sigma} c_t + B \right)^{1-\sigma}
$$

give k_{t+1}
Increasing in V

• Let t be the first period where $\tau_t \neq \bar{\tau}$ and assume that $\tau_s \neq 0$ for some $s > t$.

• If we wanted to maximize V we would set $\tau_0 = \bar{\tau}$ and $\tau_t = 0$ for all $t \geq 1$ thus we can conclude that this equilibrium does not maximize

$$\sum_{s=t+1}^{\infty} \beta^s \frac{\sigma}{1-\sigma} \left(\frac{A}{\sigma} c_t + B \right)^{1-\sigma}$$

give k_{t+1}

• We can therefore construct a new sequence of c_t’s that follows the old sequence for $s \leq t$ and follows a new sequence for $s > t$, but that also increases V.

David Evans
Increasing in V

- Let t be the first period where $\tau_t \neq \bar{\tau}$ and assume that $\tau_s \neq 0$ for some $s > t$.
- If we wanted to maximize V we would set $\tau_0 = \bar{\tau}$ and $\tau_t = 0$ for all $t \geq 1$ thus we can conclude that this equilibrium does not maximize

 $$\sum_{s=t+1}^{\infty} \beta^s \frac{\sigma}{1-\sigma} \left(\frac{A}{\sigma}c_t + B \right)^{1-\sigma}$$

 give k_{t+1}
- We can therefore construct a new sequence of c_t’s that follows the old sequence for $s \leq t$ and follows a new sequence for $s > t$, but that also increases V.
- Thus as c_0, τ_0 stay the same and V increases we conclude that G increases so this sequence is not preferred by the median voter.

David Evans
Decreasing in V

- Let N be the first period where $\tau_N < \bar{\tau}$ and M be the first period after N where $\tau_{M+1} > 0$.
Decreasing in V

- Let N be the first period where $\tau_N < \bar{\tau}$ and M be the first period after N where $\tau_{M+1} > 0$.
- We will change $u'(c_{N-1})$ by a factor of $d\Psi$ and $u'(c_t)$ by a factor of $d\Phi$ for $t = 1, \ldots, M$. These changes take the form of $\frac{dc_t}{d\Phi} = \frac{u'(c_t)}{u''(c_t)} = -(\sigma^{-1}c_tA^{-1}B)$.
Decreasing in V

- Let N be the first period where $\tau_N < \bar{\tau}$ and M be the first period after N where $\tau_{M+1} > 0$.
- We will change $u'(c_{N-1})$ by a factor of $d\Psi$ and $u'(c_t)$ by a factor of $d\Phi$ for $t = 1, \ldots, M$. These changes take the form of $\frac{dc_t}{d\Phi} = \frac{u'(c_t)}{u''(c_t)} = - (\sigma^{-1}c_t A^{-1} B)$.
- Imposing feasibility we then obtain

$$dk_t = d\Psi \left(\prod_{j=N}^{t-1} F_k(k_j, 1) \right) (\sigma^{-1}c_{N-1} + A^{-1} B)$$

$$+ d\Phi \sum_{s=N}^{t-1} \left(\prod_{j=s+1}^{t-1} F_k(k_j, 1) \right) (\sigma^{-1}c_s + A^{-1} B)$$
Decreasing in V cont

- We note that \(dk_{M+1} = 0 \) implies that

\[
0 = d\Psi(A\sigma^{-1}c_{N-1} + B) + d\Psi \sum_{s=N}^{t-1} \left(\prod_{j=N}^{s} F_k(k_j, 1)^{-1} \right) (\sigma^{-1}c_s + A^{-1}B)
\]
Decreasing in V cont

- We note that $dk_{M+1} = 0$ implies that

$$0 = d\Psi(A\sigma^{-1}c_{N-1} + B) + d\Psi \sum_{s=N}^{t-1} \left(\prod_{j=N}^{s} F_k(k_j, 1)^{-1} \right) (\sigma^{-1} c_s + A^{-1} B)$$

- Combining this with non-negative taxes:

$$\beta F_k(k_t, 1)(A\sigma^{-1}c_t + B)^{-\sigma} \geq (A\sigma^{-1}c_{t-1} + B)^{-\sigma}$$

we obtain (when $d\Psi < 0$)

$$-d\Psi(A\sigma^{-1}c_{N-1} + B)^{1-\sigma} \geq d\Phi \sum_{s=N}^{M} \beta^{s-N+1}(A\sigma^{-1} c_s + B)^{1-\sigma}$$
Decreasing in V cont

• We note that $dk_{M+1} = 0$ implies that

$$0 = d\psi (A\sigma^{-1}c_{N-1}+B) + d\psi \sum_{s=N}^{t-1} \left(\prod_{j=N}^{s} F_k(k_j, 1)^{-1} \right) (\sigma^{-1}c_s + A^{-1}B)$$

• Combining this with non-negative taxes:

$$\beta F_k(k_t, 1)(A\sigma^{-1}c_t + B)^{-\sigma} \geq (A\sigma^{-1}c_{t-1} + B)^{-\sigma}$$

we obtain (when $d\psi < 0$)

$$-d\psi (A\sigma^{-1}c_{N-1} + B)^{1-\sigma} \geq d\Phi \sum_{s=N}^{M} \beta^{s-N+1}(A\sigma^{-1}c_s + B)^{1-\sigma}$$

• This tells us that $dV \leq 0$ with equality only if $\tau_N = 0$.

David Evans
One Example

Corollary

If preferences are CRRA and production is linear, the capital tax preferred by the median voter is \(\bar{\tau} \) forever if

\[
1 + \frac{\sigma r (1 - \bar{\tau})(R - 1)}{\left(1 - \beta^{\frac{1}{\sigma}} r \frac{1 - \sigma}{\sigma} (1 - \tau)^{\frac{1}{\sigma}}\right) r \left(1 - \beta^{\frac{1}{\sigma}} (r(1 - \tau))^{\frac{1 - \sigma}{\sigma}}\right)^{-1}} \leq 0
\]

where \(R = W_0^m / W_0 \) and \(y = rk \). This can only happen if \(\sigma > 1 \).
Corollary

If preferences are CRRA and production is linear, the capital tax preferred by the median voter is $\bar{\tau}$ forever if

$$1 + \frac{\sigma r(1 - \bar{\tau})(R - 1)}{\left(1 - \beta^\frac{1}{\sigma} r^\frac{1-\sigma}{\sigma}(1 - \tau)^\frac{1}{\sigma}\right) r \left(1 - \beta^\frac{1}{\sigma} (r(1 - \tau))^\frac{1-\sigma}{\sigma}\right)^{-1}} \leq 0$$

where $R = \frac{W^m_0}{W_0}$ and $y = rk$. This can only happen if $\sigma > 1$. This is done by checking that $\frac{\partial G}{\partial V}$ is negative in the equilibrium when $\tau_t = \bar{\tau}$ for all $t \geq 0$. This maximizes c_0 and τ_0 and minimizes V. $\frac{\partial G}{\partial V}$ is increasing in c_0, τ_0 and decreasing in V when $\sigma < 1$.