Joint-Search Theory: New Opportunities and New Frictions

Bulent Guler
Indiana University

Fatih Guvenen
University of Minnesota and NBER

Gianluca Violante
New York University, CEPR and NBER

Discussion by: Christopher Tonetti
(based on slides provided by Gianluca Violante)
Motivation

- Female labor force participation rate stands at 60% compared to 75% for males.
Motivation

- Female labor force participation rate stands at 60% compared to 75% for males.
 - Now women account for 47% of US labor force.
Motivation

- Female labor force participation rate stands at 60% compared to 75% for males.
 - Now women account for 47% of US labor force.
- Fraction of households in which wife provides majority of household income has nearly tripled since 1970.
Motivation

- Female labor force participation rate stands at 60% compared to 75% for males.
 - Now women account for 47% of US labor force.

- Fraction of households in which wife provides majority of household income has nearly tripled since 1970.

- Now 1/3 of US households have two main breadwinners.
Motivation

- Female labor force participation rate stands at 60% compared to 75% for males.
 - Now women account for 47% of US labor force.

- Fraction of households in which wife provides majority of household income has nearly tripled since 1970.
 - Now 1/3 of US households have two main breadwinners.

Bottom Line: For many households, job search is increasingly becoming a joint decision process.
Female Labor Force Participation in the US

![Graph showing labor force participation rates for all men and married white women from 1890 to 1990.]
The Rise of Dual Career Couples

Figure 1. Percent Distribution of Marital Households by Couple’s Income Contributions: 1970–2001

- Wife Sole-Provider
- Wife Provides Majority
- Equal Providers
- Husband Provides Majority
- Husband Sole-Provider

Joint-Search Theory
Aim of the Paper

- Theoretical characterization of the joint job search problem of a household
Aim of the Paper

- Theoretical characterization of the joint job search problem of a household
- Study familiar economic environments of McCall (1970) and Burdett (1978)
Aim of the Paper

- Theoretical characterization of the joint job search problem of a household
- Study familiar economic environments of McCall (1970) and Burdett (1978)
- Study two cases where joint decision leads to different outcomes from single-agent search:
Aim of the Paper

- Theoretical characterization of the joint job search problem of a household
- Study familiar economic environments of McCall (1970) and Burdett (1978)
- Study two cases where joint decision leads to different outcomes from single-agent search:
 1. Couple has concave utility over pooled income
Aim of the Paper

- Theoretical characterization of the joint job search problem of a household
- Study familiar economic environments of McCall (1970) and Burdett (1978)
- Study two cases where joint decision leads to different outcomes from single-agent search:
 1. Couple has concave utility over pooled income
 2. Couple receives job offers from multiple locations and faces a cost of living apart
Single-Search Value Functions: A Review

- Flow value for unemployed worker:

\[rV = u(b) + \alpha \int \max \{ W(w) - V, 0 \} dF(w) \]

- Flow value for employed worker:

\[rW(w) = u(w) \]
Baseline Joint Search Model

- Decision unit: couple, i.e., a pair of infinitely lived symmetric spouses indexed by \(i = 1, 2 \)
Baseline Joint Search Model

- Decision unit: couple, i.e., a pair of infinitely lived symmetric spouses indexed by $i = 1, 2$

- Couple pools income and consumption is a public good (‘unitary household’) and there is no storage
Baseline Joint Search Model

- Decision unit: couple, i.e., a pair of infinitely lived symmetric spouses indexed by $i = 1, 2$
- Couple pools income and consumption is a public good (‘unitary household’) and there is no storage
- Discount rate r, income flow during unemployment b
Baseline Joint Search Model

- Decision unit: couple, i.e., a pair of infinitely lived symmetric spouses indexed by $i = 1, 2$
- Couple pools income and consumption is a public good (‘unitary household’) and there is no storage
- Discount rate r, income flow during unemployment b
- Household intra-period utility: $u(y_1 + y_2)$, with $y_i \in \{b, w_i\}$
Baseline Joint Search Model

- Decision unit: couple, i.e., a pair of infinitely lived symmetric spouses indexed by $i = 1, 2$
- Couple pools income and consumption is a public good (‘unitary household’) and there is no storage
- Discount rate r, income flow during unemployment b
- Household intra-period utility: $u(y_1 + y_2)$, with $y_i \in \{b, w_i\}$
- Search only during unemployment
Baseline Joint Search Model

- Decision unit: couple, i.e., a pair of infinitely lived symmetric spouses indexed by $i = 1, 2$
- Couple pools income and consumption is a public good (‘unitary household’) and there is no storage
- Discount rate r, income flow during unemployment b
- Household intra-period utility: $u(y_1 + y_2)$, with $y_i \in \{b, w_i\}$
- Search only during unemployment
- At rate α, unemployed draw offer from $F(w)$, exogenous
Baseline Joint Search Model

- Decision unit: couple, i.e., a pair of infinitely lived symmetric spouses indexed by \(i = 1, 2 \)
- Couple pools income and consumption is a public good (‘unitary household’) and there is no storage
- Discount rate \(r \), income flow during unemployment \(b \)
- Household intra-period utility: \(u(y_1 + y_2) \), with \(y_i \in \{b, w_i\} \)
- Search only during unemployment
- At rate \(\alpha \), unemployed draw offer from \(F(w) \), exogenous
- No exogenous separation into unemployment
Joint-Search Value Functions

- Flow value for dual-worker couple:

\[r_T(w_1, w_2) = u(w_1 + w_2) \]
Joint-Search Value Functions

- Flow value for dual-worker couple:

\[r_T(w_1, w_2) = u(w_1 + w_2) \]

- Flow value for worker-searcher couple:

\[r_\Omega(w_1) = u(w_1 + b) + \alpha \int \max [T(w_1, w_2) - \Omega(w_1), \Omega(w_2) - \Omega(w_1), 0] \, dF(w_2) \]
Joint-Search Value Functions

- Flow value for dual-worker couple:
 \[r_T(w_1, w_2) = u(w_1 + w_2) \]

- Flow value for worker-searcher couple:
 \[r_\Omega(w_1) = u(w_1 + b) + \alpha \int \max [T(w_1, w_2) - \Omega(w_1), \Omega(w_2) - \Omega(w_1), 0] dF(w_2) \]

- Flow value for dual-searcher couple:
 \[r_U = u(2b) + 2\alpha \int \max [\Omega(w) - U, 0] dF(w) \]
Reservation Wage Functions

- Dual-searcher couple:
Reservation Wage Functions

- Dual-searcher couple:
 - Accept offer iff $w_1 > w^{**}$ s.t. $\Omega(w^{**}) = U$
Reservation Wage Functions

- Dual-searcher couple:
 - Accept offer iff $w_1 > w^{**}$ s.t. $\Omega (w^{**}) = U$

- Worker-searcher couple (spouse 1 employed):
Reservation Wage Functions

- Dual-searcher couple:
 - Accept offer iff $w_1 > w^{**}$ s.t. $\Omega(w^{**}) = U$

- Worker-searcher couple (spouse 1 employed):
 - $T(w_1, w_2) \geq \Omega(w_2)$: No quit upon acceptance
Reservation Wage Functions

- Dual-searcher couple:
 - Accept offer iff $w_1 > w^{**}$ s.t. $\Omega(w^{**}) = U$

- Worker-searcher couple (spouse 1 employed):
 - $T(w_1, w_2) \geq \Omega(w_2)$: No quit upon acceptance
 - Accept offer iff $w_2 > \phi(w_1)$ s.t. $T(w_1, \phi(w_1)) = \Omega(w_1)$
Reservation Wage Functions

- Dual-searcher couple:
 - Accept offer iff \(w_1 > w^{**} \) s.t. \(\Omega(w^{**}) = U \)

- Worker-searcher couple (spouse 1 employed):
 - \(T(w_1, w_2) \geq \Omega(w_2) \): No quit upon acceptance
 - Accept offer iff \(w_2 > \phi(w_1) \) s.t. \(T(w_1, \phi(w_1)) = \Omega(w_1) \)
 - \(T(w_1, w_2) < \Omega(w_2) \): Quit upon acceptance
Reservation Wage Functions

- **Dual-searcher couple:**
 - Accept offer iff \(w_1 > w^{**} \) s.t. \(\Omega(w^{**}) = U \)

- **Worker-searcher couple (spouse 1 employed):**
 - \(T(w_1, w_2) \geq \Omega(w_2) \): No quit upon acceptance
 - Accept offer iff \(w_2 > \phi(w_1) \) s.t. \(T(w_1, \phi(w_1)) = \Omega(w_1) \)
 - \(T(w_1, w_2) < \Omega(w_2) \): Quit upon acceptance
 - Accept offer iff \(w_2 > \phi(w_1) \) s.t. \(\Omega(\phi(w_1)) = \Omega(w_1) \)
Reservation Wage Functions

- Dual-searcher couple:
 - Accept offer iff $w_1 > w^{**}$ s.t. $\Omega(w^{**}) = U$

- Worker-searcher couple (spouse 1 employed):
 - $T(w_1, w_2) \geq \Omega(w_2)$: No quit upon acceptance
 - Accept offer iff $w_2 > \phi(w_1)$ s.t. $T(w_1, \phi(w_1)) = \Omega(w_1)$
 - $T(w_1, w_2) < \Omega(w_2)$: Quit upon acceptance
 - Accept offer iff $w_2 > \phi(w_1)$ s.t. $\Omega(\phi(w_1)) = \Omega(w_1)$

- Quit Decision Conditional on Acceptance:
Reservation Wage Functions

- **Dual-searcher couple:**
 - Accept offer iff $w_1 > w^{**}$ s.t. $\Omega(w^{**}) = U$

- **Worker-searcher couple (spouse 1 employed):**
 - $T(w_1, w_2) \geq \Omega(w_2)$: No quit upon acceptance
 - Accept offer iff $w_2 > \phi(w_1)$ s.t. $T(w_1, \phi(w_1)) = \Omega(w_1)$
 - $T(w_1, w_2) < \Omega(w_2)$: Quit upon acceptance
 - Accept offer iff $w_2 > \phi(w_1)$ s.t. $\Omega(\phi(w_1)) = \Omega(w_1)$

- **Quit Decision Conditional on Acceptance:**
 - Quit job iff $w_1 < \psi(w_2)$ s.t. $T(\psi(w_2), w_2) = \Omega(w_2)$
Reservation Wage Functions

- **Dual-searcher couple:**
 - Accept offer iff $w_1 > w^{**}$ s.t. $\Omega(w^{**}) = U$

- **Worker-searcher couple (spouse 1 employed):**
 - $T(w_1, w_2) \geq \Omega(w_2)$: No quit upon acceptance
 - Accept offer iff $w_2 > \phi(w_1)$ s.t. $T(w_1, \phi(w_1)) = \Omega(w_1)$
 - $T(w_1, w_2) < \Omega(w_2)$: Quit upon acceptance
 - Accept offer iff $w_2 > \phi(w_1)$ s.t. $\Omega(\phi(w_1)) = \Omega(w_1)$

- **Quit Decision Conditional on Acceptance:**
 - Quit job iff $w_1 < \psi(w_2)$ s.t. $T(\psi(w_2), w_2) = \Omega(w_2)$

... Thus, by symmetry of T, $\psi(.) = \phi(.)$
Risk Neutrality: Joint search = Single search w/ 2 jobs

\[T(w_1, w_2) = W(w_1) + W(w_2) \]

\[U = 2V \]

\[\Omega(w_1) = V + W(w_1) \]
Risk Neutrality: Joint search = Single search w/ 2 jobs

\[T(w_1, w_2) = W(w_1) + W(w_2) \]
\[U = 2V \]
\[\Omega(w_1) = V + W(w_1) \]
Risk Aversion: HARA Utility

- HARA: Hyperbolic Absolute Risk Aversion

Risk Tolerance: $-\frac{u'(c)}{u''(c)} = \rho + \tau c$
Risk Aversion: HARA Utility

- HARA: Hyperbolic Absolute Risk Aversion

 Risk Tolerance: \[- \frac{u'(c)}{u''(c)} = \rho + \tau c\]

- Constant Absolute Risk Aversion (CARA): \(\tau = 0\)
Risk Aversion: HARA Utility

- HARA: Hyperbolic Absolute Risk Aversion

Risk Tolerance: \(-\frac{u'(c)}{u''(c)} = \rho + \tau c\)

- Constant Absolute Risk Aversion (CARA): \(\tau = 0\)
 - Exponential: \(u(c) = -e^{-\rho c}/\rho\)
Risk Aversion: HARA Utility

- HARA: Hyperbolic Absolute Risk Aversion

 Risk Tolerance: $-u'(c)/u''(c) = \rho + \tau c$

- Constant Absolute Risk Aversion (CARA): $\tau = 0$
 - Exponential: $u(c) = -e^{-\rho c}/\rho$

- Decreasing Absolute Risk Aversion (DARA): $\tau > 0$
Risk Aversion: HARA Utility

- **HARA**: Hyperbolic Absolute Risk Aversion

 Risk Tolerance: \(-u'(c)/u''(c) = \rho + \tau c\)

- **Constant Absolute Risk Aversion (CARA)**: \(\tau = 0\)

 - Exponential: \(u(c) = -e^{-\rho c}/\rho\)

- **Decreasing Absolute Risk Aversion (DARA)**: \(\tau > 0\)

 - \(\rho = 0\) and \(\tau = 1/\sigma\): \(u(c) = c^{1-\sigma}/(1 - \sigma)\)
Risk Aversion: HARA Utility

- **HARA: Hyperbolic Absolute Risk Aversion**

 Risk Tolerance: \(- \frac{u'(c)}{u''(c)} = \rho + \tau c\)

- **Constant Absolute Risk Aversion (CARA):** \(\tau = 0\)
 - Exponential: \(u(c) = -\frac{e^{-\rho c}}{\rho}\)

- **Decreasing Absolute Risk Aversion (DARA):** \(\tau > 0\)
 - \(\rho = 0\) and \(\tau = 1/\sigma\): \(u(c) = c^{1-\sigma}/(1-\sigma)\)

- **Increasing Absolute Risk Aversion (IARA):** \(\tau < 0\)
Risk Aversion: HARA Utility

- HARA: Hyperbolic Absolute Risk Aversion

 Risk Tolerance: \(-u'(c)/u''(c) = \rho + \tau c\)

 - Constant Absolute Risk Aversion (CARA): \(\tau = 0\)
 - Exponential: \(u(c) = -e^{-\rho c}/\rho\)

 - Decreasing Absolute Risk Aversion (DARA): \(\tau > 0\)
 - \(\rho = 0\) and \(\tau = 1/\sigma\): \(u(c) = c^{1-\sigma}/(1-\sigma)\)

 - Increasing Absolute Risk Aversion (IARA): \(\tau < 0\)
 - \(\tau = -1\): \(u(c) = -(\rho - c)^2\)
CARA case

- Let w^* be reservation wage in single-search
CARA case

- Let w^* be reservation wage in single-search
- Result 1: $w^{**} < w^*$
CARA case

- Let w^* be reservation wage in single-search
- Result 1: $w^{**} < w^*$
 - Trade-off: consumption smoothing vs. income maximization
CARA case

- Let w^* be reservation wage in single-search
- Result 1: $w^{**} < w^*$
 - Trade-off: consumption smoothing vs. income maximization
- Result 2:
 $$
 \phi (w_1) = \begin{cases}
 w_1 & \text{if } w_1 < w^* \\
 w^* & \text{if } w_1 \geq w^*
 \end{cases} \quad \text{(quit)}
 $$
 $$
 \phi (w_1) = \begin{cases}
 w_1 & \text{if } w_1 < w^* \\
 w^* & \text{if } w_1 \geq w^*
 \end{cases} \quad \text{(no quit)}
 $$
CARA case

- Let w^* be reservation wage in single-search

- Result 1: $w^{**} < w^*$
 - Trade-off: consumption smoothing vs. income maximization

- Result 2:

\[
\phi (w_1) = \begin{cases}
 w_1 & \text{if } w_1 < w^* \\
 w^* & \text{if } w_1 \geq w^*
\end{cases} \quad \text{(quit)}
\]

\[
\phi (w_1) = \begin{cases}
 w_1 & \text{if } w_1 < w^* \\
 w^* & \text{if } w_1 \geq w^*
\end{cases} \quad \text{(no quit)}
\]

- Because of CARA, the reservation wage of the unemployed spouse in the no-quit range is independent of the wage of the employed spouse, w_1
CARA

Joint-Search Theory
CARA: Breadwinner Dynamics

\[w_2 \]

\[w^* \]

\[w^{**} \]

\[w^{**} = w^* = \hat{w} \]

1: search
2: work

1: work
2: search
General Characterization for HARA

- $w^{**} < w^*$
General Characterization for HARA

- $w^{**} < w^*$

- For $w_1 < \hat{w}$
 \[\phi(w_1) = w_1 \] (i.e., 450 line)
General Characterization for HARA

- $w^{**} < w^*$

- For $w_1 < \hat{w}$
 \[\phi (w_1) = w_1 \quad \text{(i.e., 45° line)} \]

- For $w_1 \geq \hat{w}$:
 \[
 \phi' (w_1) \begin{cases}
 > 0 & \text{if DARA} \\
 = 0 & \text{if CARA} \\
 < 0 & \text{if IARA}
 \end{cases}
 \]
General Characterization for HARA

- $w^{**} < w^*$

- For $w_1 < \hat{w}$
 \[
 \phi(w_1) = w_1 \quad \text{(i.e., 45° line)}
 \]

- For $w_1 \geq \hat{w}$:
 \[
 \phi'(w_1) \begin{cases}
 > 0 & \text{if DARA} \\
 = 0 & \text{if CARA} \\
 < 0 & \text{if IARA}
 \end{cases}
 \]

- Breadwinner Cycle always exists. However, the nature of the region changes depending on DARA, CARA, or IARA.
DARA

Joint-Search Theory
CARA
Joint-Search: HARA prefs

IARA

Joint-Search Theory
Two Extensions

- Symmetric on-the-job search \((\alpha_e = \alpha_u)\)
Two Extensions

- Symmetric on-the-job search \((\alpha_e = \alpha_u)\)
 - The search strategies of the jointly searching couple are identical to those of the single-agent

Joint-Search Theory
Two Extensions

- Symmetric on-the-job search ($\alpha_e = \alpha_u$)
 - The search strategies of the jointly searching couple are identical to those of the single-agent

- Exogenous separation
Two Extensions

- Symmetric on-the-job search ($\alpha_e = \alpha_u$)
 - The search strategies of the jointly searching couple are identical to those of the single-agent

- Exogenous separation
 - In the CARA and DARA cases, breadwinner cycle exists, and $\phi(w)$ is strictly increasing
Two-location Model

- Risk-neutrality
Two-location Model

- Risk-neutrality
- Inside location \((i)\) and outside location \((o)\)
Two-location Model

- Risk-neutrality
- Inside location \((i)\) and outside location \((o)\)
- Offers arrive at rate \(\alpha_i\) and \(\alpha_o\), drawn from the same distribution \(F\)
Two-location Model

- Risk-neutrality
- Inside location \((i)\) and outside location \((o)\)
- Offers arrive at rate \(\alpha_i\) and \(\alpha_o\), drawn from the same distribution \(F\)
- Fixed cost of living apart \(\kappa\) (in consumption units) for the couple
Two-location Model

- Risk-neutrality
- Inside location \((i)\) and outside location \((o)\)
- Offers arrive at rate \(\alpha_i\) and \(\alpha_o\), drawn from the same distribution \(F\)
- Fixed cost of living apart \(\kappa\) (in consumption units) for the couple
- No cost of migration across locations
Value functions

- Dual-worker and Separate Dual-worker couple:

\[
\begin{align*}
 r_T(w_1, w_2) &= w_1 + w_2 \\
 r_S(w_1, w_2) &= w_1 + w_2 - \kappa
\end{align*}
\]
Value functions

- Dual-worker and Separate Dual-worker couple:

\[r_T(w_1, w_2) = w_1 + w_2 \]
\[r_S(w_1, w_2) = w_1 + w_2 - \kappa \]

- Worker-searcher couple:

\[r_{\Omega}(w_1) = w_1 + b + \alpha_i \int \max [T(w_1, w_2) - \Omega(w_1), \Omega(w_2) - \Omega(w_1), 0] dF(w_2) \]
\[+ \alpha_o \int \max [S(w_1, w_2) - \Omega(w_1), \Omega(w_2) - \Omega(w_1), 0] dF(w_2) \]
Value functions

- **Dual-worker and Separate Dual-worker couple:**
 \[rT(w_1, w_2) = w_1 + w_2 \]
 \[rS(w_1, w_2) = w_1 + w_2 - \kappa \]

- **Worker-searcher couple:**
 \[r\Omega (w_1) = w_1 + b + \alpha_i \int \max [T(w_1, w_2) - \Omega (w_1), \Omega (w_2) - \Omega (w_1), 0] \, dF(w_2) \]
 \[+ \alpha_o \int \max [S(w_1, w_2) - \Omega (w_1), \Omega (w_2) - \Omega (w_1), 0] \, dF(w_2) \]

- **Dual-searcher couple:**
 \[rU = 2b + 2(\alpha_i + \alpha_o) \int \max [\Omega (w) - U, 0] \, dF(w) \]
Inside (Left) and Outside (Right) Offers