Bailouts and Financial Fragility
by Todd Keister - WP 2010

Cecilia Parlatore Siritto

March 2010
Bailouts

Bailouts have two effects:

- Moral hazard problem: Banks choose to be more illiquid.
- Stabilize the economy: Decrease the probability of bank runs.

→ Bailouts can increase or decrease ex ante welfare.
The Model

- 3 periods $t = 0, 1, 2$
- 2 goods: 1 private good 1 public good
- Continuum of depositors $i \in [0, 1]$ with preferences

$$u(c_1, c_2, d; \theta_i) = \frac{(c_1 + \theta_i c_2)^{1-\gamma}}{1-\gamma} + \delta \frac{d^{1-\gamma}}{1-\gamma}$$

- i.i.d. $\theta_i \in \Theta = \{0, 1\}$ and $\Pr(\theta_i = 0) = \pi$ for all i, $\gamma > 1, \delta > 0$
- Competitive banks
- Benevolent government
Endowment and Technology

- Consumers are endowed with 1 unit of the private good in period 0.
- Banking technology: transforms period 0 private good to period t private good

$$t = 0 \quad t = 1 \quad t = 1$$

$$-1 \quad 1 \quad \text{or} \quad R > 0$$
Government

- In period 1 it can transform 1 unit of the private good into 1 unit of public good.
- Government taxes endowments in period 0 and provides public good or bailouts in period 1.

\[d = \tau - (1 - \pi) b \]
Withdrawal Strategy

• "Sunspot" random variable $s \in \{s_1, s_2\}$ realized in period 1. $\Pr(s = s_2) = q$
• s only observed by consumers.
• θ_i is realized in period 1 in order and remains private information.
• Withdrawal decisions are sequential after θ_i is observed.
• We can define a withdrawal strategy for depositor i as

$$y_i(\theta_i, S) = \begin{cases}
0 & \text{if withdraws in period 1} \\
1 & \text{if withdraws in period 2}
\end{cases}$$
A **banking policy** is a function $x : [0, 1] \rightarrow \mathbb{R}_+$ where $x(\mu)$ is the amount received by an agent who withdraws in the μth position in period 1.

- Feasibility implies
 \[\int_0^1 x(\mu) \, d\mu \leq 1 - d \]

- Sequential service in period 1
- Equal treatment in period 2
Timing

- Taxes and deposits
- Banking policy
- Bailout/Renegotiation

- S is realized
- Depositors discover $	heta_i$ and decide to withdraw or not in order
- Late withdrawals,
Constrained efficient allocation

Planner doesn't realize $s = s_2$ until π agent withdraw.

$$\max_{\{c_1, c_2, d, c_{1P}, c_{2P}, d_P\}} (1 - q) \left[\pi \frac{c_1^{1-\gamma}}{1-\gamma} + (1 - \pi) \frac{c_2^{1-\gamma}}{1-\gamma} + \delta \frac{d^{1-\gamma}}{1-\gamma} \right]$$

$$+ q \left[\pi \frac{c_1^{1-\gamma}}{1-\gamma} + (1 - \pi) \frac{c_{1P}^{1-\gamma}}{1-\gamma} + (1 - \pi) \frac{c_{2P}^{1-\gamma}}{1-\gamma} + \delta \frac{d_P^{1-\gamma}}{1-\gamma} \right]$$

s.t.

$$\pi c_1 + d + (1 - \pi) \frac{c_2}{R} = 1$$

$$(1 - \pi) \left(\pi c_{1P} + (1 - \pi) \frac{c_{2P}}{R} \right) + d_P \leq 1 - \pi c_1$$

$$\implies c_1^*, c_2^*, c_{1P}^*, c_{2P}^*, d^* > 0, d_P^* < d^*$$

- The constrained efficient allocation involves bailouts.
Illiquidity

The degree of illiquidity of a bank is given by the ration of short term liabilities to short term assets.

\[\rho = \frac{c_1}{1 - d} \]

If \(\rho > 1 \), the bank is illiquid.

- \(\rho^* > 1 \).
Equilibrium withdrawing strategy

- Concentrate on the case in which only impatient investors withdraw early in state s_1, but all investors attempt to withdraw early in state s_2, i.e.,

$$y_i(\theta_i, s) = \begin{cases}
0 & \text{if } s = s_2 \\
\theta_i & \text{if } s = s_1
\end{cases}$$

- $Pr(s = s_2) = q$ is the propensity to run of late consumers.
Definition
The financial sector is fragile if, for some value of $q > 0$, an individual investor has a strict incentive to run on her intermediary when all other investors are doing so in s_2.
Bailouts

- Indiscriminate nature of bailouts.
- Let ϕ be the remaining resources in the banking system in per capita terms
 \[
 \phi = \frac{1 - \tau - \pi c_1 d \mu}{1 - \pi}
 \]
- Resources are distributed such that all banks have the same per capita resources to give out, irrespectively of their remaining resources, i.e.,
 \[
 \phi_i + b_i = \phi_j + b_j \text{ for all } i, j
 \]
Optimal Continuation Allocation

Value derived from private consumption:

\[V_0 (\phi + b) = \max_{\{c_1, c_2\}} \pi \frac{c_1^{1-\gamma}}{1-\gamma} + (1 - \pi) \frac{c_2^{1-\gamma}}{1-\gamma} \]

s.t.

\[(1 - \pi) c_2 = R (\phi + b - \pi c_1) \quad \text{and} \quad c_i \geq 0 \]
Optimal ex-post bailout

\[V_1 = \max_{0 \leq b \leq \frac{\tau}{1-\pi}} (1 - \pi) V_0 (\phi + b) + \delta \frac{d^{1-\gamma}}{1 - \gamma} \]
Competitive equilibrium with bailouts

$$\max _{\{c_1,c_2\}} (1 - q) \left(\pi \frac{c_1^{1-\gamma}}{1-\gamma} + (1 - \pi) \frac{c_2^{1-\gamma}}{1-\gamma} + \delta \frac{\tau^{1-\gamma}}{1-\gamma} \right)$$

$$+ q \left(\pi \frac{c_1^{1-\gamma}}{1-\gamma} + V_1 \right)$$

$$\pi c_1 + \tau + (1 - \pi) \frac{c_2}{R} = 1$$
$$c_2 \geq c_1$$

$$\implies c_1^B, c_2^B, r_1^B$$
Illiquidity

For any $q > 0$

$$\rho^B > \rho^*$$

In the equilibrium with bailouts, banks are more illiquid than in than in the first best. \implies Moral hazard problem
The set of parameters such that the banking system is fragile under the efficient bailout policy is given by $\Gamma^B(\delta)$.

This set is decreasing in δ.

$$\Gamma^B(\delta') \subset \Gamma^B(\delta) \quad \delta' > \delta$$
Competitive equilibrium with no-bailout policy

\[
\max_{\{c_1, c_2\}} (1 - q) \left(\pi \frac{c_1^{1-\gamma}}{1 - \gamma} + (1 - \pi) \frac{c_2^{1-\gamma}}{1 - \gamma} \right) \\
+ q \left(\pi \frac{c_1^{1-\gamma}}{1 - \gamma} + V_0 \left(\frac{1 - \tau - \pi c_1}{1 - \pi} \right) \right) + \delta \frac{\tau^{1-\gamma}}{1 - \gamma}
\]

\[
\pi c_1 + \tau + (1 - \pi) \frac{c_2}{R} = 1 \\
c_2 \geq c_1
\]

\[\implies c_1^{NB}, \ c_2^{NB},\]

\[\rho^{NB} < \rho^* < \rho^B\]
Fragility

- The set of parameters such that the banking system is fragile under the no-bailout policy is given by $\Gamma^{NB} = \Gamma^B (0)$

$\implies \Gamma^{NB} \supset \Gamma^B (\delta)$

\implies Stabilization effect of bailouts
Tax on illiquidity

Tax banks according to their contribution to aggregate illiquidity.

\[\text{fee}_j = \eta \pi \rho_j \sigma_j (1 - \tau) \]

where \(\sigma_j \) is the fraction of depositors who invest their after-tax endowment in bank \(j \).

\[
\max_{\{c_1, c_2\}} \pi \frac{c_1^{1-\gamma}}{1-\gamma} + (1-q) \left((1-\pi) \frac{c_2^{1-\gamma}}{1-\gamma} + \delta \frac{\tau^{1-\gamma}}{1-\gamma} \right) + q \pi \\
\text{s.t.} \quad \pi c_1 + (1-\pi) \frac{c_2}{R} = 1 - \tau - \text{fee}_j + N(1-\tau)
\]

By choosing \(\eta \) appropriately, constrained efficiency is achieved.
Tax on illiquidity

- Government can continue to follow the ex post efficient bailout policy
- Offsets moral hazard problem