Long-Run Labor Supply and the Elasticity of Intertemporal Substitution for Consumption

Susanto Basu & Miles S. Kimball 2002

We suspect that these could maintain simultaneously:

- A) Consumption and labor are additively separable in an additively time-separable utility function.
- B) The elasticity of intertemporal substitution for consumption is relatively low-well below 1.
- C) Long-run labor supply is not totally inelastic. Income and substitution effects are not both zero. But they cancel.

Given A) separable utility function

 And B) empirical estimates of the elasticity of intertemporal substitution found quite low values. Hall (1988)

$$\Delta \ln(C_t) = s(r_t - \rho) + \mathcal{E}_t + \theta \mathcal{E}_{t-1}$$

Hall (1988) gets point estimates of EIS, s, equal to 0.1 or 0.2 that are not significantly different from zero. s=0.2 gives us

$$U(C,N) = -C^{-4} - v(N)$$

where v(N) is a convex function of labor N.

• The implied real consumption wage is

$$\frac{W}{P_{C}} = -\frac{U_{N}(C,N)}{U_{C}(C,N)} = C^{5}v'(N)$$

Per capita consumption C has roughly doubled in the 35 years since 1960. The average work hours N has stayed fairly constant. Thus, this functional form implies, counterfactually, that the real consumption wage should have increased by a factor of

$$2^5 = 32$$

over that time period!

Theory

- Make the equality of income and substitution effects on labor supply a maintained assumption when estimating the elasticity of intertemporal substitution in consumption.
- This assumption implies a real wage proportional to consumption times some function of the quantity of labor

$$\frac{W}{P_C} = -\frac{U_N(C,N)}{U_C(C,N)} = Cv'(N)$$

The period utility function must be of the form

 $U(C,N) = \Phi(\ln(C) - v(N))$

for some monotonically increasing function Φ .

- The reasonable additional assumption of a constant elasticity of substitution in consumption when the quantity of labor is held constant narrows the utility function down to the King-Plosser-Rebelo form $U(C,N) = \frac{C^{1-\gamma}}{1-\gamma}e^{(\gamma-1)\nu(N)}$ • We write $s = \frac{1}{\gamma}$ where s now represents the

labor-held-constant elasticity of intertemporal substitution in consumption.

- The intertemporal Euler equation $U_{C}(C_{t-1}, N_{t-1}) = E_{t-1}e^{(r_{t}-\rho)}U(C_{t}, N_{t})$
- Using the K-P-R utility function, log-linearize the Euler equation

$$\Delta c = s(r_t - \rho) + \tau(1 - s)\Delta n + \mathcal{E}_t + h.o.t.$$

c=In(C), n=In(N), and

$$N^* v'(N^*) = (\frac{WN}{P_C C})^* = \tau$$

where N^* is the trend level of labor.

• One more rearrangement shows that this is a very simple IV estimation:

 $\Delta c - \tau \Delta n = cons \tan t + s[r_t - \tau \Delta n] + \mathcal{E}_t$

Evidence: Data

- Quarterly, seasonally-adjusted, aggregate U.S. data from 1949:1-1999:2
- The real interest rate is computed as the after-tax nominal rate on three-month U.S. Treasure bills minus inflation.
- Two kinds of data for inflation: one is the ex post inflation, the other is the ex ante expectation from survey data.

Results: $\Delta c - \tau \Delta n = cons \tan t + s[r_t - \tau \Delta n] + \varepsilon_t + \theta \varepsilon_{t-1}$

- The results are reported for three sample periods: 1982-1999, 1949-1982 and 1949-1999.
- For the period of 1982-1999, the estimated values of EIS (Elasticity of Intertemporal Substitution) is significantly greater than zero unlike Hall (1988) and most subsequent work in this area.
- τ equals labor income divide by nominal consumption expenditure. For the data,

au =0.77. In the regression, they use au =0.8.

• Instruments

 $\Delta c(-2)$, $\Delta n(-2)$, r(-2), $\Delta y(-2)$, and c(-2)-y(-2).

- The estimated s is not sensitive to the instrument set used. All the results say that s is about two-third or one-half, depending on the inflation data.
- For s=0.5, the corresponding utility function is

$$\frac{e^{v(N)}}{C}$$

• For s=0.67, the corresponding utility function is

$$\frac{2e^{\frac{1}{2}v(N)}}{C^{\frac{1}{2}}}$$

• Adding disposable income to the regression.

 $\Delta c - \tau \Delta n = cons \tan t + s[r_t - \tau \Delta n] + \beta \Delta y + \varepsilon_t + \theta \varepsilon_{t-1}$

- The disposable income variable is insignificant and the estimate of s is significant. This contrast with Campbell and Mankiw's (1989) rule-ofthumb hypothesis and shows that excess sensitivity does not exist.
- Statistically, we can not reject the restriction of K-P-R functional form.

Early sample and entire sample

- For the earlier sample: 1949-1982, as well as the entire sample 1949-1999, the model is significantly less well.
- The estimates of the intertemporal elasticity of substitution are much smaller and insignificantly different from zero, akin to Hall (1988).
- The restriction of the K-P-R functional form are rejected in both cases.

Compared with Hall (1988)

• The models are different Hall (1988) $\Delta \ln(C_t) = s(r_t - \rho) + \varepsilon_t + \theta \varepsilon_{t-1}$ The model of this paper

 $\Delta c - \tau \Delta n = cons \tan t + s[r_t - \tau \Delta n] + \varepsilon_t + \theta \varepsilon_{t-1}$

The results are different
Low EIS in Hall (1988)
For the time period of 1982-1999, EIS is greater than zero in this paper.

What if the cancellation is not exact?

• If the elasticity of real wage with respect to consumption, ξ is not unity, the model becomes

 $\Delta c - \tau \Delta n = cons \tan t + s[r_t - \xi \tau \Delta n] + \varepsilon_t + \theta \varepsilon_{t-1}$

• They believe that ξ is close enough to 1 in order to match the long-run labor supply elasticity.

Conclusion

- We need depart from the assumption of additive separability between consumption and labor in order to explain the fact that a permanent increase in the real wage has very little effect on long-run labor supply.
- Combing separable utility assumption and K-P-R utility functional form gives us the estimate of EIS about 0.5-0.75. The omitted variable of labor can account for Campell and Mankiw's (1989) finding about excess sensitivity.

Further investigation

- K-P-R implies the complementarity between consumption and labor. This means the household should plan to have their consumption drop at retirement. And the drop is quite larger than data.
- The implication for monetary policy. Is complementarity a solution to the channel for monetary expansion to cause an increase in consumption?