Kambourov & Manovskii (2005): "Occupational Specificity of Human Capital"

Prof. Sargent's Reading Group

Matthias Kredler

17 April 2007

Question of the paper

Besides general labor-market experience, what drives wage growth?

- *EmpTen*: tenure with employer
- OccTen: tenure in occupation
- IndTen: tenure in an industrial sector

Previous literature:

- Shaw (1984, 1987): papers on occupation-specific skills "[that were largely] ignored by the literature."
- Perhaps this is due to the well-known fact that survey data on occupation and industry affilitation are riddled with measurement error."

Motivating fact

US Displaced Workers Survey:

- Displaced from job in last 5 years: 15% reduction in weekly earnings
- Displaced and changed occupation: 18% drop
- Displaced but stay in occupation: 6% drop

New data

Panel Study of Income Dynamics (PSID), 1999: *Retrospective Occupation-Industry Supplemental Data Files*

- Assigns 3-digit 1970 Census codes to reported occupations and industries
- Done for household heads and wives
- **9** 1968-1980

Use this to

- estimate returns to OccTen vs. IndTen, EmpTen
- evaluate different methods to identify occupation/industry switches (skip here)

Retrospective Files

- Both original and retrospective file assign code based on worker's job description in interview.
- But: Coders could compare job descriptions over years in retrospect
- 2-digit occupational mobility (switch Occ between two years) 1976-1980:
 - Original files: 26%
 - Retrospective files: 11%
- Authors present evidence that the retrospective files do better at identifying true switches.

Estimation equation

 $\ln w_{it} = \gamma' x_{it} + \beta_0 EmpTen_{it} + \beta_1 OJ_{it} + \beta_2 OccTen_{it} + \beta_3 IndTen_{it} + \beta_4 WorkExp_{it} + \theta_{it}$

Tenure of i with current employer at t
Tenure in occupation
Tenure in industry
Labor-market experience
Dummy for first year with current employer

Residual

$$\theta_{it} = \mu_i + \lambda_{ij} + \xi_{im} + \nu_{in} + \varepsilon_{it}$$

- μ_i : individual fixed effect
- λ_{ij} : Employer-match component
- ξ_{im} : Occupation-match component
- ν_{in} : Industry-match component
- ε_{it} : Error term

Endogeneity!

An idea for IV

Make tenure vector orthogonal on fixed effects (graph!). For occupation:

$$Occ\tilde{T}en_{it} = OccTen_{it} - \frac{1}{T_{it,Emp}} \sum_{i=1}^{T_{it,Emp}} OccTen_{it}$$

Removes correlation with

- μ_i : worker fixed effect
- ξ_{im} : *Occ*-match component.

Problems with this IV

 $OccTen_{it}$ is still correlated with (see graph!)

- λ_{ij} : *Emp*-match effect
- ν_{in} : *Ind*-match effect

For within-spell-demeaned \tilde{EmpTen} and \tilde{IndTen} , have similar problems:

- EmpTen: potentially correlated with Ind-match and Occ-match effect
- IndTen: potentially correlated with Occ-match and Emp-match effect

"Arguing for orthogonality" (I)

- Authors argue for each potential correlation: Can't affect β_{OccTen}
- Most problematic: Workers might shop for...
 - ... better *Emp*-match inside *Occ*
 - ... better *Ind*-match inside *Occ*

Could bias up $\beta_{OccTen}!$

"Arguing for orthogonality" (II)

Emp/Ind-shopping inside Occ creates no problems since:

- Most *Emp*-switching early in career, but results still hold for sample of old workers
- If high-paying firms select Occ-experienced workers: Should indeed attribute these wage gains to OccTen!
- Supporting data on Emp-changes (see next slide)

Data on employer changes

Layoffs vs. voluntary quits (PSID survey question):

	One	digit	Two	Digit	Three	Digit
	Switch	Stay	Switch	Stay	Switch	Stay
% layoffs	.371	.363	.370	.366	.378	.341
(St. Err.)	(.028)	(.031)	(.026)	(.033)	(.024)	(.037)

- Altonji & Shakatko (1987): Wages ...
 - increase by 5 % on quit
 - ... fall upon layoff
- Thus: "...OccTen is not likely to be correlated with the quality of employer matches".

Results: Full model

		One Digit			Two Digit		Three Digit			
		2 years (1)	5 years (2)	$\begin{array}{c} 8 \text{ years} \\ (3) \end{array}$	$\begin{array}{c} 2 \text{ years} \\ (4) \end{array}$	5 years (5)	8 years (6)	2 years (7)	5 years (8)	8 years (9)
А.	OLS									
	Occupation	.0730* (.0076)	$.1616^{*}$ (.0170)	.2243* (.0232)	$.0750^{*}$ (.0078)	$.1666^{*}$ (.0172)	.2321* (.0237)	$.0891^{*}$ (.0082)	$.1995^{*}$ (.0186)	$.2794^{*}$ (.0259)
	Industry	$.0279^{*}$ (.0079)	$.0707^{*}$ (.0167)	$.1134^{*}$ (.0224)	$.0279^{*}$ (.0080)	$.0695^{*}$ (.0169)	$.1098^{*}$ (.0228)	.0109 (.0081)	.0306 (.0170)	.0690* (.0227)
	Employer	.0103 (.0139)	.0056 $(.0144)$.0030 (.0160)	.0012 (.0137)	0083 $(.0145)$	0151 (.0164)	.0010 (.0136)	0106 $(.0149)$	0194 (.0172)
в.	IV-GLS									
	Occupation	$.0368^{*}$ (.0064)	$.0802^{*}$ (.0139)	$.1108^{*}$ (.0194)	$.0496^{*}$ (.0065)	$.1069^{*}$ (.0145)	$.1418^{*}$ (.0204)	$.0539^{*}$ (.0068)	$.1197^{*}$ (.0153)	$.1680^{\circ}$ (.0220)
	Industry	$.0212^{*}$ (.0068)	$.0464^{*}$ (.0146)	$.0634^{*}$ (.0199)	.0054 (.0067)	.0132 (.0141)	.0204 (.0191)	0020 (.0071)	0064 $(.0149)$	0123 (.0201)
	Employer	.0022 (.0093)	.0034 $(.0118)$.0062 (.0152)	0003 (.0093)	.0023 $(.0124)$.0060 (.0163)	.0008 (.0095)	.0019 (.0136)	.0044 (.0182

Results: Partial models

IV: 3-digit

	1	2	3
EmpTen	.0066*		.0002
	(.0018)		(.0022)
OccTen		.0239	$.0275^{*}$
		(.0034)	(.0036)
IndTen	.0129*	-0.0009	0008
WorkExp	.0511*	$.0560^{*}$	$.0485^{*}$
$WorkExp^2$	0008^{*}	0007^{*}	0008^{*}

Results: Robustness

- Results robust across specifications:
 - Leave out IndTen
 - 1,2,3-digit classifications
 - Different definitions of Occ- and Ind-changes
- Occ-effects are always largest and significant
- IV: 2-3% OccTen-premium per year
- OLS: 3-5% OccTen-premium per year

Conclusions

- Substantial returns to OccTen: 12-20% over first 5 years
- *IndTen*, *EmpTen* way less important than *OccTen*
- Results robust
- This is consistent with human capital being occupation-specific
- US Displaced Workers Survey: Occ-switcher drive the results of large earnings losses of displaced workers
- PSID Retrospective Files: Originally coded Occ and Ind often wrong