Information, Liquidity, Asset Prices and Monetary Policy

Benjamin Lester, Andrew Postlewaite, Randall Wright, 2011, presented by Shengxing Zhang

October 2011
Introduction

- why hold money?
 - money plays the role as a medium of exchange
- why use fiat money rather than other assets?
 - recognizability → difference in liquidity
 - asset as an imperfect substitute to money
- question of this paper:
 - what causes the difference in recognizability?
 - asymmetric information rather than self-fulfilling prophecy
A modified version of Lagos and Wright (2005)

- discrete time
- a continuum of infinitely lived agents, of total measure 1
- two subperiod in each period:
 - subperiod 1: decentralized market for heterogeneous goods
 - produce heterogeneous goods that meet others’ want
 - random matching → partners
 - bilateral bargaining → terms of trade
 - medium of exchange: fiat money, and asset
 - subperiod 2: centralized market for homogeneous good
 - agents produce homogenous goods
 - assets are claims to homogeneous goods in the future
 - walrasian market for the homogeneous goods and all assets
Asset

- fiat money: bears no fruit; cannot be privately produced
- other asset
 - fake ones bearing no fruits can be mixed with good asset
 - cost of producing fake asset is zero
- importance recognizability
 - assets can be accepted a medium of exchange only when they are recognized to be good asset
 - in DM, fiat money are recognizable
 - other assets recognizable with some probability
 - in CM, all assets are recognizable
Agents’ period payoff

- period payoff:
 - payoff in subperiod 1: $u(q) - c(q')$, where $u(0) = c(0) = c'(0) = 0$, $U'(0) = u'(0) = \infty$

 - q: consumption from purchase
 - q': production for sales

 - payoff in subperiod 2: $U(X) - H$

 - X: consumption of homogeneous goods
 - H: cost of producing H units
Agents’ expected payoff I

- payoff at time 0 $E_0 \sum_{t=0}^{\infty} \beta^t \{u(q_t) - c(q'_t) + U(X_t) - H_t\}$
 - in DM each period:
 * probability λ: produce and sell
 * probability λ: buy and pay by money or asset
 * probability $1 - 2\lambda$: no trade
 * conditional on having a trade: payoff depends on
 - asset holdings of buyer
 - the recognizability of the assets in the portfolio
Recognizability of asset

- Suppose there are \(n \) assets, numbered from 1 to \(n \).
- Agents recognize a subset of the assets \(S \in 2\{1,...,n\} \).
- The type of meeting is the set of recognizable assets of buyers.
- The measure over the random type of meeting: \(\rho_S \).
- Trade in decentralized markets depend not on total wealth but on the total wealth of recognizable assets.
Agents’ expected payoff II

- \(W_t(y) \) value function in CM; \(V_t(a) \) value function in DM, \(\phi_t \)
- asset price
- payoff at time \(t \)

\[
V_t(a) = \mathbb{E}_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} \{ u(q_\tau) - c(q_\tau') + U(X_\tau) - H_\tau \} \\
= \lambda \int \sum_s \rho_s \left[u(q_t(y_s)) + W_t(y - p_t(y_s)) \right] dF_t(\tilde{a}) \\
+ \lambda \int \sum_s \rho_s \left[-c(q_t(\tilde{y}_s)) + W_t(y + p_t(\tilde{y}_s)) \right] dF_t(\tilde{a}) \\
+ (1 - 2\lambda) W_t(y)
\]

- \(y_s = \phi \cdot a_1 s, \ y = \phi \cdot a \)
Agents’ problem in the centralized market

Assume stationarity

\[W(y) = \max_{X, H, \hat{a}} U(X) - H + \beta V(\hat{a}) \]

s.t.

\[X = H + y - \sum_j \phi_j \hat{a}_j + T \]

\[H \in [0, \bar{H}] \]

\[X \geq 0 \]

\[a_j \geq 0 \]

\[- W(y)' = 1 \text{ where } y = \sum_j (\delta_j + \phi_j) a_j \]
Agents’ problem in the decentralized market

\[V(a) = W[y(a)] + \lambda \sum_{S \in P} \rho_S \{ u[q_S(a)] - p_S(a) \} + \lambda K \]

- \((q_S(a), p_S(q_S(a)))\) is decided by bargaining
 - and depends on \(y_S = \phi \cdot a1_S\)
- \(K\): expected gain from trade as a seller
 - it does not depend on \(a\)
Definition of equilibrium

A stationary equilibrium is asset holding \(a \) at the beginning of DM, asset holding at the beginning of CM, consumption and production in both subperiod, and prices \(\phi_j \) given \(\phi_j^- \) such that

- given \(\phi_j \), the allocation solves agents’ problem in both subperiods
- market clearing in CM: \(a = A \)
- allocation satisfies the Transversality condition
Decision in the centralized market

\[W(y) = \max_{X,H,\hat{a}} U(X) - H + \beta V(\hat{a}) \]

\[\text{s.t. } X = H + y - \sum_j \phi_j \hat{a}_j + T \]
\[H \in [0, \bar{H}] \]
\[X \geq 0 \]
\[a_j \geq 0 \]

where \(y = \sum_j (\delta_j + \phi_j) a_j \)

- FOC (assume \(H < \bar{H} \)):

\[-\phi_j + \beta \frac{\partial V(\hat{a})}{\partial \hat{a}_j} \leq 0, = \text{ if } \hat{a}_j > 0, \forall j \]

- \(W'(y) = 1 \): agents with different \(a \) → same \(\hat{a} \)
Decision in the decentralized market

\[V(a) = W[y(a)] + \lambda \sum_{S \in P} \rho_S \{ u[q_S(a)] - p_S(a) \} + \lambda K \]

bargaining outcome:

- If \(y_S(a) \geq y^* \), then
 - \(p_S(a) = y^* \), and \(q_S(a) = q^* \)
 - \(u'(q^*) = c'(q^*) \)

- If \(y_S(a) < y^* \), then
 - \(p_S(a) = y_S(a) \), \(q_S(a) < q^* \)
 - \(y_S(a) = z(q) = \theta c(q) + (1 - \theta) u(q) < z(q^*) \)
 - \(\theta \): bargaining power of seller

- A wedge between MU and MC: \(u'(q) > c'(q) \)
Euler Equation

\[\phi_j^- = \beta (\delta_j + \phi_j) \left\{ 1 + \lambda \sum_{S \in P} \rho_S l(q_S(A))1_{j \in S} \right\} \]

\[l(q) = \frac{u'(q) - c'(q)}{z(q)} \]

- asset price depends on:
 - dividend: \(\delta_j \)
 - search friction: \(\lambda \)
 - recognizability: \(\rho_S \)
 - liquidity premium: \(l(q) \)
Trade-off of holding assets

- gain: dividend in CM
- loss: risk of being not recognized in DM
 - as $\lambda \to 0$, $\delta_{\text{fiat money}} = 0 < \delta_{\text{other asset}}$
 - the price of fiat money decreases exponentially relative to that of other assets
 - as $\rho_S \to 0$
 - liquidity premium goes down
 - trade-off between recognizability and dividend gain
Comparative statics on liquidity premium

- if there is only one asset not perfectly recognizable:
 - liquidity premium decreases monotonically with asset supply
 - liquidity is "saturated" at certain point with zero premium

- if there are two assets: recognizable fiat money and equity
 - liquidity premium for more recognizable wealth is higher
Value of an asset

- value of a asset:
 - fundamental value
 - value as a medium of exchange
- value as a medium of exchange depends on
 - recognizability of the asset in DM
Information acquisition

- with information acquisition, ρ_S endogenized
- strategic complementarity between decisions of information acquisition
- possibility of multiple equilibria
- sensitivity of liquidity to asset supply or fundamentals
Conclusion

Thank you.