Equilibrium Selection in global games with strategic complementarities
David Frankel, Stephen Morris and Ady Pauzner

Discussion by Michal Szkup

NYU

November 2010
Global Games

- Consider the following complete information game $\Gamma(\theta)$.
Global Games

Consider the following complete information game $\Gamma(\theta)$

- Let $\Lambda = \{1, .., l\}$ be the set of players;

In the incomplete information version of the above game, called $G(v)$:

- θ is drawn from a continuous distribution Φ;
- Each player observes $x_i = \theta + v \eta_i$, a noisy signal of θ;
- η_i is distributed according to atomless distribution f_i with bounded support;

We refer to the above game $G(v)$ as a global game.
Consider the following complete information game $\Gamma(\theta)$

- Let $\Lambda = \{1, \ldots, I\}$ be the set of players;
- Let $A_i \subseteq [0, 1]$ be the set of possible actions.

In the incomplete information version of the above game, called $G(v)$:

- θ is drawn from a continuous distribution ϕ;
- Each player observes $x_i = \theta + v\eta_i$, a noisy signal of θ;
- η_i is distributed according to atomless distribution f_i with bounded support;

We refer to the above game $G(v)$ as a global game.
Consider the following complete information game $\Gamma(\theta)$

- Let $\Lambda = \{1, \ldots, l\}$ be the set of players;
- Let $A_i \subseteq [0, 1]$ be the set of possible actions;
- $u_i(a_i, a_{-i}, \theta)$ be the utility of the player i.
Global Games

Consider the following complete information game $\Gamma(\theta)$

- Let $\Lambda = \{1, \ldots, l\}$ be the set of players;
- Let $A_i \subseteq [0, 1]$ be the set of possible actions
- $u_i(a_i, a_{-i}, \theta)$ be the utility of the player i.
- for large θ, $a_i = 1$ is dominant while for small θ, $a_i = 0$ is dominant
Global Games

Consider the following complete information game $\Gamma(\theta)$

- Let $\Lambda = \{1, \ldots, I\}$ be the set of players;
- Let $A_i \subseteq [0, 1]$ be the set of possible actions
- $u_i(a_i, a_{-i}, \theta)$ be the utility of the player i.
- for large θ, $a_i = 1$ is dominant while for small θ, $a_i = 0$ is dominant

In the incomplete information version of the above game, called $G(\nu)$:

1. θ is drawn from a continuous distribution ϕ;
2. Each player observes $x_i = \theta + \nu \eta_i$, a noisy signal of θ;
3. η_i is distributed according to atomless distribution f_i with bounded support;

We refer to the above game $G(\nu)$ as a global game.
Global Games

- Consider the following complete information game $\Gamma(\theta)$
 - Let $\Lambda = \{1, \ldots, I\}$ be the set of players;
 - Let $A_i \subseteq [0, 1]$ be the set of possible actions
 - $u_i(a_i, a_{-i}, \theta)$ be the utility of the player i.
 - for large θ, $a_i = 1$ is dominant while for small θ, $a_i = 0$ is dominant

- In the incomplete information version of the above game, called $G(\nu)$:
 - θ is be drawn from a continuous distribution ϕ;
Global Games

- Consider the following complete information game $\Gamma(\theta)$
 - Let $\Lambda = \{1, \ldots, I\}$ be the set of players;
 - Let $A_i \subseteq [0, 1]$ be the set of possible actions
 - $u_i(a_i, a_{-i}, \theta)$ be the utility of the player i.
 - for large θ, $a_i = 1$ is dominant while for small θ, $a_i = 0$ is dominant

- In the incomplete information version of the above game, called $G(v)$:
 - θ is be drawn from a continuous distribution ϕ;
 - Each player observes $x_i = \theta + v\eta_i$, a noisy signal of θ;
Global Games

- Consider the following complete information game $\Gamma(\theta)$
 - Let $\Lambda = \{1, \ldots, I\}$ be the set of players;
 - Let $A_i \subseteq [0,1]$ be the set of possible actions
 - $u_i(a_i, a_{-i}, \theta)$ be the utility of the player i.
 - for large θ, $a_i = 1$ is dominant while for small θ, $a_i = 0$ is dominant

- In the incomplete information version of the above game, called $G(v)$:
 - θ is be drawn from a continuous distribution ϕ;
 - Each player observes $x_i = \theta + \nu \eta_i$, a noisy signal of θ;
 - η_i is distributed according to atomless distribution f_i with bounded support;
Global Games

- Consider the following complete information game $\Gamma(\theta)$
 - Let $\Lambda = \{1, \ldots, I\}$ be the set of players;
 - Let $A_i \subseteq [0, 1]$ be the set of possible actions
 - $u_i(a_i, a_{-i}, \theta)$ be the utility of the player i.
 - for large θ, $a_i = 1$ is dominant while for small θ, $a_i = 0$ is dominant

- In the incomplete information version of the above game, called $G(\nu)$:
 - θ is be drawn from a continuous distribution ϕ;
 - Each player observes $x_i = \theta + \nu \eta_i$, a noisy signal of θ;
 - η_i is distributed according to atomless distribution f_i with bounded support;

- We refer to the above game $G(\nu)$ as a global game.
Carlsson and van Damme (1993)

- They considered 2×2 games belonging to the above class
Carlsson and van Damme (1993)

They considered 2×2 games belonging to the above class

- 2 players
Carlsson and van Damme (1993)

- They considered 2×2 games belonging to the above class
 - 2 players
 - 2 actions games
Carlsson and van Damme (1993)

- They considered 2×2 games belonging to the above class
 - 2 players
 - 2 actions games
- They showed that as noise in signals vanishes:
Carlsson and van Damme (1993)

- They considered 2×2 games belonging to the above class
 - 2 players
 - 2 actions games

- They showed that as noise in signals vanishes:
 - there is unique action that survives iterative deletion of dominated strategies
Carlsson and van Damme (1993)

- They considered 2×2 games belonging to the above class
 - 2 players
 - 2 actions games

- They showed that as noise in signals vanishes:
 - there is unique action that survives iterative deletion of dominated strategies
 - the action that survives is independent of the distribution of the noise
Frankel Morris and Pauzner (2003)

- The goal is to establish whether the result of Carlsson and van Damme (2003) holds in larger class of global games.
The goal is to establish whether the result of Carlsson and van Damme (2003) holds in larger class of global games.

Focus on the games with strategic complementarities;
Assumptions

(A1) Strategic Complementarities:

If \(a_i \geq a_i' \) and \(a_{-i} \geq a_{-i}' \) then \(\forall \theta, \Delta u_i (a_i, a_i', a_{-i}, \theta) \geq \Delta u_i (a_i, a_i', a_{-i}', \theta) \)
Assumptions

1. **(A1) Strategic Complementarities:**

 If \(a_i \geq a'_i \) and \(a_{-i} \geq a'_{-i} \) then \(\forall \theta, \Delta u_i (a_i, a'_i, a_{-i}, \theta) \geq \Delta u_i (a_i, a'_i, a'_{-i}, \theta) \)

2. **(A2) Dominance regions**

 \(\exists \theta \) such that \(\forall \theta < \bar{\theta} \) and \(\forall a'_i \neq 0, \Delta u (0, a'_i, a_{-i}, \theta) > 0 \)

 \(\exists \bar{\theta} \) such that \(\forall \theta > \bar{\theta} \) and \(\forall a'_i \neq 1, \Delta u (1, a'_i, a_{-i}, \theta) > 0, 0 \bar{\theta} > \theta \)
Assumptions

1. (A1) Strategic Complementarities:

If $a_i \geq a'_i$ and $a_{-i} \geq a'_{-i}$ then $\forall \theta, \Delta u_i (a_i, a'_i, a_{-i}, \theta) \geq \Delta u_i (a_i, a'_i, a'_{-i}, \theta)$

2. (A2) Dominance regions

$\exists \theta$ such that $\forall \theta < \theta$ and $\forall a'_i \neq 0$, $\Delta u (0, a'_i, a_{-i}, \theta) > 0$

$\exists \bar{\theta}$ such that $\forall \theta > \bar{\theta}$ and $\forall a'_i \neq 1$, $\Delta u (1, a'_i, a_{-i}, \theta) > 0, 0 < \bar{\theta} > \theta$

3. (A3) State monotonicity:

$\exists K_0$ such that $\forall a_i \geq a'_i$ and $\theta, \theta' \in [\theta, \bar{\theta}]$, $\theta \geq \theta'$ we have

$\Delta u (a_i, a'_i, a_{-i}, \theta) - \Delta u (a_i, a'_i, a_{-i}, \theta') \geq K_0 (a_i - a'_i) (\theta - \theta')$
Assumptions

1. (A1) Strategic Complementarities:

 If $a_i \geq a'_i$ and $a_{-i} \geq a'_{-i}$ then $\forall \theta$, $\Delta u_i (a_i, a'_i, a_{-i}, \theta) \geq \Delta u_i (a_i, a'_i, a'_{-i}, \theta)$

2. (A2) Dominance regions

 $\exists \theta$ such that $\forall \theta < \theta$ and $\forall a'_i \neq 0$, $\Delta u (0, a'_i, a_{-i}, \theta) > 0$

 $\exists \bar{\theta}$ such that $\forall \theta > \bar{\theta}$ and $\forall a'_i \neq 1$, $\Delta u (1, a'_i, a_{-i}, \theta) > 0$, $0 \bar{\theta} > \theta$

3. (A3) State monotonicity:

 $\exists K_0$ such that $\forall a_i \geq a'_i$ and $\theta, \theta' \in [\theta, \bar{\theta}]$, $\theta \geq \theta'$ we have

 $\Delta u (a_i, a'_i, a_{-i}, \theta) - \Delta u (a_i, a'_i, a_{-i}, \theta') \geq K_0 (a_i - a'_i) (\theta - \theta')$

4. (A4) Payoff continuity

 $u_i (a_i, a_{-i}, \theta)$ is continuous in all arguments
Strategies

- A pure strategy of a player i is a function $s_i : \mathbb{R} \rightarrow A_i$.
Strategies

- A pure strategy of a player i is a function $s_i : \mathbb{R} \rightarrow A_i$
- A pure strategy profile is a vector of pure strategies, $s = (s_i)_{i=1}^I$
Strategies

- A pure strategy of a player i is a function $s_i : \mathbb{R} \rightarrow A_i$
- A pure strategy profile is a vector of pure strategies, $s = (s_i)_{i=1}^l$
- A profile s is increasing if $s_i(x_i)$ is increasing in x_i for all i
Strategies

- A pure strategy of a player i is a function $s_i : \mathbb{R} \rightarrow A_i$
- A pure strategy profile is a vector of pure strategies, $s = (s_i)_{i=1}^{I}$
- A profile s is increasing if $s_i(x_i)$ is increasing in x_i for all i
- A profile s' is **higher** than s ($s' \succ s$) if $s'_i(x_i) \geq s_i(x_i)$ for all x_i
Strategies

- A pure strategy of a player i is a function $s_i : \mathbb{R} \rightarrow A_i$
- A pure strategy profile is a vector of pure strategies, $s = (s_i)_{i=1}^I$
- A profile s is increasing if $s_i(x_i)$ is increasing in x_i for all i
- A profile s' is **higher** than s ($s' \succeq s$) if $s'_i(x_i) \geq s_i(x_i)$ for all x_i
- A mixed strategy is a probability distribution over pure strategies
Theorem (1)

\[\exists \text{ an increasing strategy profile } s^* \text{ such that if, for each } v > 0, s^v \text{ is a strategy profile that survives iterative deletion of strategies in } G(v), \text{ then } \]

\[\lim_{v \to 0} s^v_i (x_i) = s^*_i (x_i) \]

for almost all \(x_i \).

This theorem states that as noise vanishes the iterative deletion of dominated strategies selects a unique Bayesian Nash Equilibrium of the game.
Intuition for Theorem 1 (Simple Case)

- 2 players with $A_i = [0, 1]$ and uniform prior
Intuition for Theorem 1 (Simple Case)

- 2 players with $A_i = [0, 1]$ and uniform prior
- For any $v > 0$ use iterative deletion of dominated strategies to find bounds on the set of rationalizable strategies, $\underline{S}(v)$ and $\overline{S}(v)$.

Assumptions (A_1) and (A_3) imply that $\underline{S}(v) = \overline{S}(v)$ and if $\delta > 0$ then $\underline{S}(x + \delta) > a$.
Intuition for Theorem 1 (Simple Case)

- 2 players with $A_i = [0, 1]$ and uniform prior
- For any $v > 0$ use iterative deletion of dominated strategies to find bounds on the set of rationalizable strategies, $\underline{S}(v)$ and $\bar{S}(v)$.
- Assumptions $(A1)$ and $(A3)$ imply that $\underline{S}(v) = \bar{S}(v)$
Intuition for Theorem 1 (Simple Case)

- 2 players with $A_i = [0, 1]$ and uniform prior
- For any $v > 0$ use iterative deletion of dominated strategies to find bounds on the set of rationalizable strategies, $\underline{S}(v)$ and $\overline{S}(v)$.
- Assumptions (A1) and (A3) imply that $\underline{S}(v) = \overline{S}(v)$.
Intuition for Theorem 1 (Simple Case)

- 2 players with $A_i = [0, 1]$ and uniform prior
- For any $v > 0$ use iterative deletion of dominated strategies to find bounds on the set of rationalizable strategies, $\underline{S}(v)$ and $\overline{S}(v)$.
- Assumptions (A1) and (A3) imply that $\underline{S}(v) = \overline{S}(v)$

$\begin{aligned}
 a^* &\geq \overline{S}(x^*) = \underline{S}(x^* + \delta) & \text{and if } \delta > 0 \underline{S}(x^* + \delta) > a^*
\end{aligned}$
Intuition for Theorem 1 (Simple Case)

- 2 players with $A_i = [0, 1]$ and uniform prior
- For any $v > 0$ use iterative deletion of dominated strategies to find bounds on the set of rationalizable strategies, $\underline{S}(v)$ and $\bar{S}(v)$.
- Assumptions (A1) and (A3) imply that $\underline{S}(v) = \bar{S}(v)$

\[a^* \geq \bar{S}(x^*) = \underline{S}(x^* + \delta) \] and if $\delta > 0$ $\underline{S}(x^* + \delta) > a^*$

$\implies \delta = 0$ and so $\bar{S} = \underline{S} = \tilde{S}$
Intuition for Theorem 1 (General Case)

Solve first a game in which agents have a uniform prior and their utility is given by \(u_i(a_i, a_{-i}, x_i) \).
Intuition for Theorem 1 (General Case)

- Solve first a game in which agents have a uniform prior and their utility is given by $u_i (a_i, a_{-i}, x_i)$.
- It can be shown that such game has unique rationalizable strategy.
Intuition for Theorem 1 (General Case)

- Solve first a game in which agents have a uniform prior and their utility is given by $u_i (a_i, a_{-i}, x_i)$.
- It can be shown that such game has unique rationalizable strategy.
- Then show that as noise vanishes, the simplified game "converges" to the original game.
Intuition for Theorem 1 (General Case)

- Solve first a game in which agents have a uniform prior and their utility is given by $u_i(a_i, a_{-i}, x_i)$.
- It can be shown that such game has unique rationalizable strategy.
- Then show that as noise vanishes, the simplified game "converges" to the original game.
- More precisely, the set of rationalizable strategies of the simplified game and original game converges.
Intuition for Theorem 1 (General Case)

- Solve first a game in which agents have a uniform prior and their utility is given by $u_i(a_i, a_{-i}, x_i)$.
- It can be shown that such game has unique rationalizable strategy.
- Then show that as noise vanishes, the simplified game "converges" to the original game.
- More precisely, the set of rationalizable strategies of the simplified game and original game converges.
- This result holds for any prior and any finite number of players or continuum of players.
A partial characterization of equilibrium

We can characterize the surviving equilibria of the game when noise is small.

Definition

\(Q(\varepsilon, \nu) \) is the set of parameters \(\theta \) for which no Nash Equilibrium action profile \(a \) of the complete information game with payoffs \((u_i(\cdot, \theta'))_{i=1}^l \) for some \(\theta' \in [\theta - \varepsilon, \theta + \varepsilon] \), such that for every strategy \(s^\nu \) surviving iterative deletion of dominated strategies in \(G(\nu) \), \(\forall i \quad |s^\nu_i(\theta) - a_i| < \varepsilon \)
A partial characterization of equilibrium

We can characterize the surviving equilibria of the game when noise is small

Definition

\(Q(\varepsilon, \nu) \) is the set of parameters \(\theta \) for which no Nash Equilibrium action profile \(a \) of the complete information game with payoffs \((u_i(\cdot, \theta'))_{i=1}^{l} \) for some \(\theta' \in [\theta - \varepsilon, \theta + \varepsilon] \), such that for every strategy \(s^\nu \) surviving iterative deletion of dominated strategies in \(G(\nu) \), \(\forall i \ |s^\nu_i(\theta) - a_i| < \varepsilon \)

- Define \(Q(\varepsilon, \nu) \) be a set of \(\theta \) for which surviving strategy profiles in \(G(\nu) \) do not prescribe all players to play close to some pure strategy Nash equilibrium of a complete information game.
Theorem (2)

In \(G(v) \) in the limit as \(v \to 0 \) for almost all payoff parameter \(\theta \), players play arbitrary close to some pure strategy Nash Equilibrium of the complete information game with payoffs \(u(\cdot, \theta') \) that is arbitrary close to \(\theta \), i.e. \(\forall \epsilon > 0 \) there is \(\bar{v} \) s.t. \(\forall v < \bar{v}, |\theta' - \theta| < \epsilon \).
A partial characterization of equilibrium

Theorem (2)

In $G(v)$ in the limit as $v \to 0$ for almost all payoff parameter θ, players play arbitrary close to some pure strategy Nash Equilibrium of the complete information game with payoffs $u(\cdot, \theta')$ that is arbitrary close to θ, i.e. $\forall \epsilon > 0$ there is \overline{v} s.t. $\forall v < \overline{v}$, $|\theta' - \theta| < \epsilon$
Further results

Theorem (3)

There exists a two-person, four-action game satisfying (A1) – (A5) in which for different noise structure different equilibria are selected in the limit as the signal errors vanish.
Further results

Theorem (3)

There exists a two-person, four-action game satisfying (A1) – (A5) in which for different noise structure different equilibria are selected in the limit as the signal errors vanish.

Theorem (4)

If the complete information game at some payoff parameter \(\theta \) is quasiconcave in \(a_i \) and has local potential maximizer (LP-maximizer) \(a^* \) then \(s^*(\theta) = a^* \) regardless of the noise structure.
Conclusions

- Limit Uniqueness holds for a general class of global games with strategic complementarities

Noise Independence can fail even in 2-players games. Noise Independence holds in class of local potential games.
Conclusions

- Limit Uniqueness holds for a general class of global games with strategic complementarities
- Noise Independence can fail even in 2-players games.
Conclusions

- Limit Uniqueness holds for a general class of global games with strategic complementarities
- Noise Independence can fail even in 2-players games.
- Noise Independence holds in class of local potential games.
Appendix: Intuition for Theorem 1

Consider the following game:

- 2 players with symmetric actions
- $A_i = [0, 1]$ for $i = 1, 2$
- θ is distributed uniformly
- Rest of the assumptions hold
Appendix: Intuition for Theorem 1

Consider the following game:

- 2 players with symmetric actions $A_i = [0, 1]$
Appendix: Intuition for Theorem 1

Consider the following game:

- 2 players with symmetric actions $A_i = [0, 1]$
- θ is distributed uniformly
Appendix: Intuition for Theorem 1

Consider the following game:

- 2 players with symmetric actions $A_i = [0, 1]$
- θ is distributed uniformly
- rest is unchanged
Consider the following game:

- 2 players with symmetric actions $A_i = [0, 1]$
- θ is distributed uniformly
- rest is unchanged
- all the assumptions hold
Appendix: Step 1

- Assume that player j plays according to a strategy $s^0(x_i) = 0$.

Consider now player i. By assumption (A2), $\exists x_1$ such that if $x_i > x_1$ then $a_i(x_i) = 1$. Hence no player will ever choose a pure strategy that lies below $s^1(x_i) = 1$ if $x_i > x_1$ and $s^1(x_i) = 0$ otherwise.
Appendix: Step 1

- Assume that player j plays according to a strategy $s^0(x_i) = 0$.
- Consider now player i.
Appendix: Step 1

- Assume that player j plays according to a strategy $s^0(x_i) = 0$.
- Consider now player i.
- By assumption $(A2)$, $\exists x^1$ such that if $x_i \geq x^1$ then $a_i(x_i) = 1$.

Appendix: Step 1

- Assume that player j plays according to a strategy $s^0(x_i) = 0$.
- Consider now player i.
- By assumption $(A2)$, $\exists x^1$ such that if $x_i \geq x^1$ then $a_i(x_i) = 1$
- Hence no player will ever choose a pure strategy that lies below s^1 where $s^1(x_i) = 1$ if $x_i \geq x^1$ and $s^1(x_i) = 0$ otherwise.
Appendix: Step 1

- Assume that player \(j \) plays according to a strategy \(s^0(x_i) = 0 \).
- Consider now player \(i \).
- By assumption (A2), \(\exists x^1 \) such that if \(x_i \geq x^1 \) then \(a_i(x_i) = 1 \).
- Hence no player will ever choose a pure strategy that lies below \(s^1 \) where \(s^1(x_i) = 1 \) if \(x_i \geq x^1 \) and \(s^1(x_i) = 0 \) otherwise.

![Diagram showing strategy choice for player i with \(a_i = 0 \) and \(a_i = 1 \) based on \(x_i \).]
Appendix: Step 2

- Assume that player j plays according to a strategy s_1^1 as defined above.
Appendix: Step 2

- Assume that player j plays according to a strategy s^1 as defined above.
- By (A1) player i’s best response to s^1, call it s^2 is weakly above s^1.

Denote the limit of this process as S. Similarly, denote by S a strategy that survives in the limit iterated deletion of dominated strategies starting with $s^0(x_i) = 1$.

Frankle, Morris and Puzner (NYU)
Equilibrium Selection in global games
Appendix: Step 2

- Assume that player j plays according to a strategy s_1 as defined above.
- By (A1) player i’s best response to s_1, call it s_2 is weakly above s_1.
- Denote the limit of this process S.

Frankle, Morris and Puzner (NYU)
Equilibrium Selection in global games
Appendix: Step 2

- Assume that player j plays according to a strategy s^1 as defined above.
- By (A1) player i’s best response to s^1, call it s^2, is weakly above s^1.
- Denote the limit of this process S.
- Similarly, denote by \bar{S} a strategy that survives in the limit iterated deletion of dominated strategies starting with $\bar{s}^0(x_i) = 1$.

Frankle, Morris and Puzner (NYU)
Appendix: Step 2

- Assume that player j plays according to a strategy s^1 as defined above.
- By (A1) player i’s best response to s^1, call it s^2 is weakly above s^1.
- Denote the limit of this process S.
- Similarly, denote by \bar{S} a strategy that survives in the limit iterated deletion of dominated strategies starting with $\bar{s}^0(x_i) = 1$.

![Diagram](attachment:image.png)
Appendix: Final Step (1)

- It remains to show that $S = \overline{S}$.

Frankle, Morris and Puzner (NYU)
Equilibrium Selection in global games
Appendix: Final Step (1)

- It remains to show that $S = \bar{S}$.
- To do so define $\tilde{S}(x) = S(x + \delta)$ such that $\tilde{S} \geq \bar{S}$ and $\exists x$ s.t. $\tilde{S}(x) = \bar{S}(x)$
Appendix: Final Step (1)

- It remains to show that $S = \overline{S}$.
- To do so define $\tilde{S}(x) = S(x + \delta)$ such that $\tilde{S} \geq \overline{S}$ and $\exists x$ s.t. $\tilde{S}(x) = \overline{S}(x)$.
Appendix: Final Step (1)

- It remains to show that $S = \bar{S}$.
- To do so define $\tilde{S}(x) = S(x + \delta)$ such that $\tilde{S} \geq \bar{S}$ and $\exists x$ s.t. $\tilde{S}(x) = \bar{S}(x)$

- Call this signal x^* and define a^* as a best response of player i who observed x^* and believes $s_j = \tilde{S}$
Appendix: Final Step (1)

- It remains to show that $S = \bar{S}$.
- To do so define $\tilde{S}(x) = S(x + \delta)$ such that $\tilde{S} \geq \bar{S}$ and $\exists x$ s.t. $\tilde{S}(x) = \bar{S}(x)$

Call this signal x^* and define a^* as a best response of player i who observed x^* and believes $s_j = \tilde{S}$
- Since $\tilde{S} \geq \bar{S}$ it follows by (A1) that $a^* \geq \bar{S}(x^*) = S(x^* + \delta)$
Appendix: Final Step (2)

- Consider two cases:
Appendix: Final Step (2)

Consider two cases:

- player i observes x^* and expects his opponent to play \tilde{S}
Appendix: Final Step (2)

- Consider two cases:
 - player i observes x^* and expects his opponent to play \tilde{S}
 - player i observes $x^* + \delta$ and expects his opponent to play S

However, his estimate of θ is strictly higher at $x + \delta$ by (A3), it follows that $\delta > 0$.
Appendix: Final Step (2)

- Consider two cases:
 - player \(i \) observes \(x^* \) and expects his opponent to play \(\tilde{S} \)
 - player \(i \) observes \(x^* + \delta \) and expects his opponent to play \(S \)

- In both cases he faces the same distribution of action of his opponent.
Appendix: Final Step (2)

- Consider two cases:
 - player i observes x^* and expects his opponent to play \tilde{S}
 - player i observes $x^* + \delta$ and expects his opponent to play S

- In both cases he faces the same distribution of action of his opponent.
- However, his estimate of θ is strictly higher at $x^* + \delta$
Appendix: Final Step (2)

- Consider two cases:
 - player i observes x^* and expects his opponent to play \tilde{S}
 - player i observes $x^* + \delta$ and expects his opponent to play S

- In both cases he faces the same distribution of action of his opponent.
- However, his estimate of θ is strictly higher at $x^* + \delta$
- by (A3) it follows that $\forall \delta > 0 \ S(x^* + \delta) > a^* \implies \delta = 0$
Appendix: Final Step (2)

- Consider two cases:
 - player i observes x^* and expects his opponent to play \tilde{S}
 - player i observes $x^* + \delta$ and expects his opponent to play S

- In both cases he faces the same distribution of action of his opponent.

- However, his estimate of θ is strictly higher at $x^* + \delta$

- by (A3) it follows that $\forall \delta > 0 \ S (x^* + \delta) > a^* \implies \delta = 0$

- This last implication follows from the fact that we also have $a^* \geq S (x^* + \delta)$
Consider two cases:

- player \(i \) observes \(x^* \) and expects his opponent to play \(\tilde{S} \)
- player \(i \) observes \(x^* + \delta \) and expects his opponent to play \(S \)

In both cases he faces the same distribution of action of his opponent.

However, his estimate of \(\theta \) is strictly higher at \(x^* + \delta \)

by (A3) it follows that \(\forall \delta > 0 \quad S(x^* + \delta) > a^* \implies \delta = 0 \)

This last implication follows from the fact that we also have \(a^* \geq S(x^* + \delta) \)

That would lead to contradiction unless \(\tilde{S}(x) = S(x) \)
Definition (Potential Function)

Let N be a finite set of players, Y_i be the set of i's strategies and $u_i : Y \rightarrow R$ be i's payoff function. Then a function $P : Y \rightarrow R$ is called a potential function if for every i and every Y_{-i} we have

$$u(x, y_{-i}) - u(x', y_{-i}) = P(x, y_{-i}) - P(x', y_{-i})$$
Definition (Potential Function)

Let \(N \) be a finite set of players, \(Y_i \) be the set of \(i \)'s strategies and \(u_i : Y \rightarrow R \) be \(i \)'s payoff function. Then a function \(P : Y \rightarrow R \) is called a potential function if for every \(i \) and every \(Y_{-i} \) we have

\[
 u(x, y_{-i}) - u(x', y_{-i}) = P(x, y_{-i}) - P(x', y_{-i})
\]

- A potential function is a common payoff function such that a change is player \(i \)'s payoff from switching action to another is always the same as the change in the potential function.
Appendix (Intuition for Theorem 4)

For simplicity assume:

- a game is symmetric and the set of action is finite
Appendix (Intuition for Theorem 4)

For simplicity assume:

- a game is symmetric and the set of action is finite
- players’ utility depends directly on their own signals
Appendix (Intuition for Theorem 4)

For simplicity assume:

- a game is symmetric and the set of action is finite
- players’ utility depends directly on their own signals
- the complete information version of the game corresponding to x has potential function ν_x
Appendix (Intuition for Theorem 4)

For simplicity assume:

- a game is symmetric and the set of action is finite
- players’ utility depends directly on their own signals
- the complete information version of the game corresponding to x has potential function v_x
- v_x is maximized if all players choose a_x^*.
Appendix (Intuition for Theorem 4)

For simplicity assume:

- a game is symmetric and the set of action is finite
- players’ utility depends directly on their own signals
- the complete information version of the game corresponding to x has potential function ν_x
- ν_x is maximized if all players choose a_x^*.
- a_x^* is non-decreasing in x
Appendix (Intuition for Theorem 4)

For simplicity assume:

- a game is symmetric and the set of action is finite
- players’ utility depends directly on their own signals
- the complete information version of the game corresponding to x has potential function v_x
- v_x is maximized if all players choose a_x^*.
- a_x^* is non-decreasing in x
Appendix (Intuition for Theorem 4)

- A potential function is maximized away from discontinuities for small enough noise.
Appendix (Intuition for Theorem 4)

- A potential function is maximized away from discontinuities for small enough noise.
- Near discontinuity points there still might be miscoordination → potential maximizing strategy is not played there.

Consider now iterative best response procedure:
- Iterative best responding increases the potential function away from discontinuities. Best response must coincide with x^*_I.
- This iterative procedure converges to equilibrium x^* but x^* is payoff maximizing profile, so as noise vanishes the best responses must be except for small neighborhood of discontinuity points.
- Hence as noise vanishes, players must play potential maximizing action.
Appendix (Intuition for Theorem 4)

- A potential function is maximized away from discontinuities for small enough noise.
- Near discontinuity points there still might be miscoordination \Rightarrow potential maximizing strategy is may not be played there.
- Consider now iterative best response procedure:

Frankle, Morris and Puzner (NYU) Equilibrium Selection in global games
Appendix (Intuition for Theorem 4)

- A potential function is maximized away from discontinuities for small enough noise.
- Near discontinuity points there still might be miscoordination → potential maximizing strategy is may not be played there.
- Consider now iterative best response procedure:
 - best responding increases potential function \(\nu \)
Appendix (Intuition for Theorem 4)

- A potential function is maximized away from discontinuities for small enough noise.
- Near discontinuity points, there might still be miscoordination, so the potential maximizing strategy is not played there.
- Consider the iterative best response procedure:
 - Best responding increases the potential function ν.
 - Away from discontinuities, best response coincides with a^*_x.
A potential function is maximized away from discontinuities for small enough noise.

Near discontinuity points there still might be miscoordination \(\implies \) potential maximizing strategy is may not be played there.

Consider now iterative best response procedure:

- best responding increases potential function \(\nu \)
- away from discontinuities best response has to coincide with \(a^*_x \)
- this iterative procedure converges to equilibrium
Appendix (Intuition for Theorem 4)

- A potential function is maximized away from discontinuities for small enough noise.
- Near discontinuity points, there might still be miscoordination. A potential maximizing strategy may not be played there.
- Consider now iterative best response procedure:
 - Best responding increases potential function ν.
 - Away from discontinuities, best response has to coincide with a^*_x.
 - This iterative procedure converges to equilibrium.
 - But a^*_x is payoff maximizing profile, so as noise vanishes the best responses must be except for small neighborhood of discontinuity points.
Appendix (Intuition for Theorem 4)

- A potential function is maximized away from discontinuities for small enough noise.
- Near discontinuity points there still might be miscoordination, meaning a potential maximizing strategy is may not be played there.
- Consider now iterative best response procedure:
 - Best responding increases potential function ν.
 - Away from discontinuities best response has to coincide with a^*_x.
 - This iterative procedure converges to equilibrium.
 - But a^*_x is payoff maximizing profile, so as noise vanishes the best responses must be except for small neighborhood of discontinuity points.
 - Hence as noise vanishes, players must play potential maximizing action.