On Efficient Distribution with Private Information
by Atkeson and Lucas - RES 1992

Cecilia Parlatore Siritto

NYU

October 2010
The model

- \(t = 0, 1, 2, \ldots \)
- Single, non storable consumption good, \(y_t = y \)
- Continuum of consumers
 - Preferences
 \[
 E \left(\sum_{t=0}^{\infty} (1 - \beta) \beta^t V(c_t) \theta_t \right)
 \]
 \(V' > 0, \ V'' < 0, \ \theta_t \in \Theta = \{\theta_1, \ldots, \theta_n\} \)
 \[
 \Pr (\theta_t = \theta_i) = \mu (\theta_i) \text{ for all } i = 1, \ldots n \text{ and all } t
 \]
 - Endowment: \(w \in D \subset \mathbb{R} \)
 \[
 \Pr (w \in A) = \psi (A) \text{ for all } A \subseteq D
 \]
- \(\theta_t \) is private information.
Minimize constant y to attain a certain distribution ψ given the information available.
Reporting Strategies

- **Reporting strategy:**

 \[z = \{ z_t (\theta^t) \}_{t=0}^{\infty} \]

- **Truthful** reporting strategy: \(z^* = \{ z^*_t (\theta^t) \}_{t=0}^{\infty} \)

 \[z^*_t (\theta^t) = \theta^t \quad \forall t, \; \forall \theta^t \in \Theta^{t+1}. \]
Reporting Strategies

- Reporting strategy:
 \[z = \{ z_t (\theta^t) \}_{t=0}^\infty \]

- **Truthful** reporting strategy: \[z^* = \{ z^*_t (\theta^t) \}_{t=0}^\infty \]
 \[z^*_t (\theta^t) = \theta_t \quad \forall \ t, \ \forall \theta^t \in \Theta^{t+1}. \]

- Reporting history: \[z^t = \{ z_0 (\theta_0), ..., z_t (\theta_t) \} \]
Plan

- **Plan**: \(u = \{ u_t (w, z^t) \}_{t=0}^{\infty} \) such that

\[
\lim_{t \to \infty} \beta^t \sum_{s=0}^{\infty} \beta^s u_{t+s} (w, z^{t+s}) \theta_{t+s} = 0
\]

where \(u_t (w, z^t) = V (c_t (w, z^t)) \).
Plan

- **Plan**: \[u = \{ u_t (w, z^t) \}_{t=0}^{\infty} \] such that
 \[
 \lim_{t \to \infty} \beta^t \sum_{s=0}^{\infty} \beta^s u_{t+s} (w, z^{t+s}) \theta_{t+s} = 0
 \]
 where \(u_t (w, z^t) = V (c_t (w, z^t)) \).

- Expected discounted utility
 \[
 U (w, u, z) \equiv E \left(\sum_{t=0}^{\infty} (1 - \beta) \beta^t u (w, z^t) \theta_t \right)
 \]
A plan u is an **allocation** if it satisfies

(i) Truth Telling:

$$U(w, u, z^*) \geq U(w, u, z) \quad \text{for all } z \in Z \text{ and all } w \in D$$

(ii) Promise keeping:

$$U(w, u, z^*) = w \quad \text{for all } w$$
Planner’s Problem

\[
\min_{u \in A} y \\
\text{such that} \\
\int_{D \times \Theta} C(u_t(w, \theta^t)) \, d\mu(\theta_t) \, d\psi(w) \leq y \text{ for all } t
\]

where \(C(u_t(w, z^t)) \equiv c_t(w, z^t) \).
Allocation rule

A sequence $\sigma = \{f_t, g_t\}_{t=0}^{\infty}$ is an allocation rule if it satisfies

(i) Promise keeping: $\forall w_t, \forall t$

$$\int_\Theta [(1 - \beta) f_t (w_t, \theta_t) \theta_t + \beta g_t (w_t, \theta_t)] \, d\mu = w_t$$

(ii) Truth telling: $\forall z_t \in \Theta, \forall w_t \in D, \forall t$

$$[(1 - \beta) f_t (w_t, \theta_t) \theta_t + \beta g_t (w_t, \theta_t)] \, d\mu \geq [(1 - \beta) f_t (w_t, z_t) \theta_t + \beta g_t (w_t, z_t)] \, d\mu$$

(iii) Boundedness: $\lim_{t \to \infty} \beta^t g_t (w_t (w_0, z^{*t-1}), z^*_t) = 0$.
Planner’s Problem

\[
\min_{\sigma \in R} y \\
\text{such that for all } t
\]

\[
\int_{D \times \Theta} C(f_t(w_t, \theta)) \, d\mu(\theta) \, d\psi_t(w) \leq y
\]

where

\[
\psi_{t+1}(w) = S_g(\psi_t)(w) \equiv \int_{D \times \Theta} I\{w_t : g_t(w_t, \theta) = w\} \, d\mu \, d\psi_t.
\]
Equivalence

- \(R(y, \psi) \): be the set of allocations /allocation rules that attain \(\psi \) with resources \(y \).
- Then,

\[
\begin{align*}
 u \in R(y, \psi) & \rightarrow \sigma \in R(y, \psi) \\
 \sigma \in R(y, \psi) & \rightarrow u' = \{ f_t(w_t(w_0, z^{t-1}), z_t) \} \in R(y, \psi)
\end{align*}
\]

where

\[
g_t(w_t, z_t) = w_{t+1}
\]
Bellman Equation

\(\phi^* (\psi) \): minimum cost of attaining a distribution \(\psi \).

\[
\phi (\psi) = \inf_{f,g} \max \left\{ \int_{D \times \Theta} C (f(w, \theta)) \, d\mu (\theta) \, d\psi (w), \phi^* (S_g \psi) \right\}
\]
Problem T

Lemma 4.1 \(\varphi^* \) is a fixed point of \(T \) where

\[
(T \varphi)(\psi) = \inf_{f, g \in B} \max \left\{ \int_{D \times \Theta} C(f(w, \theta)) \, d\mu(\theta) \, d\psi(w), \varphi(S_g \psi) \right\}
\]
Problem T

Lemma 4.2 If there are functions φ_a, φ_c and φ such that $\forall \psi$

- $\varphi_c (\psi) < \varphi^* (\psi) < \varphi_a (\psi)$
- $\lim_{n \to \infty} T^n \varphi_a (\psi) = \lim_{n \to \infty} T^n \varphi_c (\psi) = \varphi (\psi)$

Then, $\varphi = \varphi^*$.
Problem T

Lemma 4.2 If there are functions φ_a, φ_c and φ such that $\forall \psi$

- $\varphi_c(\psi) < \varphi^*(\psi) < \varphi_a(\psi)$
- $\lim_{n \to \infty} T^n \varphi_a(\psi) = \lim_{n \to \infty} T^n \varphi_c(\psi) = \varphi(\psi)$

Then, $\varphi = \varphi^*$.

- Candidates:
 - Autarky: $\varphi_a(\psi) = \int_D C(w) \, d\psi$
 - Complete insurance: $\varphi_c(\psi) = \int_{D \times \Theta} C(u_c(w, \theta)) \, d\psi \, d\varphi$
Example: log utility

- $V(x) = \log(x)$, $C(u) = \exp(u)$

- Bounding functions
 - $\varphi_a(\psi) = \int_D \exp(w) \, d\psi$
 - $\varphi_c(\psi) = \alpha \int_D \exp(w) \, d\psi$ where $\alpha = \exp\{ -E[\theta \log \theta] \}$

- The degree of inequality grows without bound when resources are efficiently allocated.
• **Lemma 3.1** \(\forall \psi \in M, \text{ if } u \in A \text{ attains } \psi \text{ with resources } y, \exists \sigma \in R \text{ that attains } \psi \text{ with resources } y. \)

• **Lemma 3.2** \(\forall \psi \in M, \text{ if } \sigma \in R \text{ attains } \psi \text{ with resources } y \text{ and } u = \text{ is the utility plan generated by } \sigma, \text{ then } u \in A \text{ and attains } \psi \text{ with resources } y. \)