Asset Pricing with Heterogeneous Consumers and Limited Participation: Empirical Evidence

Alon Brav, George M. Constantinides and Christopher C. Geczy

Presented by Joyce Wong
MAIN QUESTION

Can the observed Equity Premium be reconciled with a Stochastic Discount Factor (SDF) implied by households’ optimizing behavior in each of the following settings?

1. An Incomplete Set of Markets to insure against idiosyncratic income shocks
2. Complete Markets
3. Complete Markets with Limited Participation in Asset Markets
A Test for SDF

Stochastic Discount Factor (SDF) is any m_t such that $\mathbb{E}_t[m_t R_t] = 1$

$$\Rightarrow \mathbb{E}[m_t (R_{M,t} - R_{F,t})] = 0$$

Value Weighted Excess Market Return

thus, to test the validity of a candidate SDF, compute the test statistic

$$u(m_t) = \frac{1}{T} \sum_{t=1}^{T} [m_t (R_{M,t} - R_{F,t})]$$

call this The Unexplained Mean Premium (given a certain SDF)
THE ECONOMY

- I households that participate in capital markets and trade J securities, each with total return $R_{j,t}$ between the dates $t - 1$ and t.

- Preferences:

$$E \left[(1 - \alpha)^{-1} \sum_{i=0}^{\infty} \beta^t (c_{i,t}^{1-\alpha} - 1) | F_0 \right]$$

- In equilibrium, we get $I \times J$ Euler equations of consumption

$$\mathbb{E}_{t-1}(\beta g_{i,t}^{-\alpha} R_{j,t}) = 1, \quad g_{i,t} = \frac{c_{i,t}}{c_{i,t-1}}$$

- A complete set of markets for agents to insure against income risk $\Rightarrow g_{i,t} = g_t \forall i$
SDF with Incomplete Consumption Insurance

- How important is cross-sectional consumption growth variation?

- Can the lower moments of the cross-sectional consumption growth rate capture most of the cross-sectional variation?

- How important is the evolution of cross-sectional skewness of the consumption growth rate?
SDF with Incomplete Consumption Insurance

- How important is cross-sectional consumption growth variation?

\[m_1^t = \beta I^{-1} \sum_{i=1}^{I} \left(\frac{c_{i,t}}{c_{i,t-1}} \right)^{-\alpha} \]

- Can the lower moments of the cross-sectional consumption growth rate capture most of the cross-sectional variation?

- How important is the evolution of cross-sectional skewness of the consumption growth rate?
SDF with Incomplete Consumption Insurance

- How important is cross-sectional consumption growth variation?

\[m_t^1 = \beta I^{-1} \sum_{i=1}^{I} \left(\frac{c_{i,t}}{c_{i,t-1}} \right)^{-\alpha} \]

- Can the lower moments of the cross-sectional consumption growth rate capture most of the cross-sectional variation?

\[g_t = I^{-1} \sum_{i=1}^{I} g_{i,t} \]

\[m_t^2 = \beta g_t^{-\alpha} \left[1 + \xi(\alpha)I^{-1} \sum_{i=1}^{I} \left(\frac{g_{i,t}}{g_t} - 1 \right)^2 - \psi(\alpha)I^{-1} \sum_{i=1}^{I} \left(\frac{g_{i,t}}{g_t} - 1 \right)^3 \right] \]

- How important is the evolution of cross-sectional skewness of the consumption growth rate?
SDF with Incomplete Consumption Insurance

- How important is cross-sectional consumption growth variation?

\[
m_t^1 = \beta I^{-1} \sum_{i=1}^{I} \left(\frac{c_{i,t}}{c_{i,t-1}} \right)^{-\alpha}
\]

- Can the lower moments of the cross-sectional consumption growth rate capture most of the cross-sectional variation?

\[
m_t^2 = \beta g_t^{-\alpha} \left[1 + \xi(\alpha) I^{-1} \sum_{i=1}^{I} \left(\frac{g_{i,t}}{g_t} - 1 \right)^2 - \psi(\alpha) I^{-1} \sum_{i=1}^{I} \left(\frac{g_{i,t}}{g_t} - 1 \right)^3 \right]
\]

- How important is the evolution of cross-sectional skewness of the consumption growth rate?

\[
m_t^3 = \beta g_t^{-\alpha} \left[1 + \xi(\alpha) I^{-1} \sum_{i=1}^{I} \left(\frac{g_{i,t}}{g_t} - 1 \right)^2 \right]
\]
SDF with Complete Consumption Insurance

Consumption growth rate is equal across households: $g_{i,t} = g_t \forall i$

- SDF in terms of the cross-sectional mean of the household consumption growth rate

- Limited Participation in Asset Markets
SDF with Complete Consumption Insurance

Consumption growth rate is equal across households: \(g_{i,t} = g_t \forall i \)

- SDF in terms of the cross-sectional mean of the household consumption growth rate

\[
m_t^4 = \beta \left(\frac{1}{I} \sum_{i=1}^{I} \frac{c_{i,t}}{c_{i,t-1}} \right)^{-\alpha} = \beta g_t^{-\alpha}
\]

- Limited Participation in Asset Markets
SDF with Complete Consumption Insurance

Consumption growth rate is equal across households: $g_{i,t} = g_t \forall i$

- SDF in terms of the cross-sectional mean of the household consumption growth rate

$$m^4_t = \beta \left(I^{-1} \sum_{i=1}^{I} \frac{c_{i,t}}{c_{i,t-1}} \right)^{-\alpha} = \beta g_t^{-\alpha}$$

- Limited Participation in Asset Markets

$$m^5_t = \beta \left(\frac{\sum_{k \in K} c_{k,t}}{\sum_{k \in K} c_{k,t-1}} \right)^{-\alpha}$$

where K is the set of households with asset holdings above a certain (positive) threshold
THE EXERCISE

\[u(m_t(\alpha)) = \frac{1}{T} \sum_{t=1}^{T} [m_t(\alpha)(R_{M,t} - R_{F,t})] \]

- For each SDF \(m_1^t, m_2^t, m_3^t, m_4^t, m_5^t \) compute \(u \) for a set of "plausible" RRA coefficients \(\alpha \in 0, 1, 2, 3, 4, 5, \ldots \).
- Report the mean unexplained premium for each setup and each RRA coefficient.
- Test against the null that the computed mean unexplained premium is zero \((H_0 : u = 0) \).
- Use household consumption data from the CEX, 1982-1996.
- Time period is one quarter.
Results I: Baseline

\[u = \frac{1}{T} \sum_{t=1}^{T} \left[\left(\beta I^{-1} \sum_{i=1}^{I} \left(\frac{c_{i,t}}{c_{i,t-1}} \right)^{-\alpha} \right) (R_{M,t} - R_{F,t}) \right] \]

<table>
<thead>
<tr>
<th>RRA ((\alpha))</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (u)</td>
<td>1.85</td>
<td>1.95</td>
<td>2.32</td>
<td>1.88</td>
<td><-10</td>
<td><-10</td>
<td><-10</td>
<td><-10</td>
</tr>
<tr>
<td>p-value</td>
<td>0.06</td>
<td>0.06</td>
<td>0.07</td>
<td>0.69</td>
<td>0.59</td>
<td>0.52</td>
<td>0.54</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Note: The p-values are based on a bootstrap distribution
RESULTS II: WHICH MOMENTS MATTER?

\[m_t^2 = \beta g_t^{-\alpha} \left[1 + \xi I^{-1} \sum_{i=1}^{I} \left(\frac{g_{i,t}}{g_t} - 1 \right)^2 - \psi I^{-1} \sum_{i=1}^{I} \left(\frac{g_{i,t}}{g_t} - 1 \right)^3 \right] \]

<table>
<thead>
<tr>
<th>RRA ((\alpha))</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean, Variance and Skewness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average (u)</td>
<td>1.85</td>
<td>1.76</td>
<td>1.51</td>
<td>0.9</td>
<td>-0.22</td>
<td>-1.85</td>
<td>-4.12</td>
<td>-7.12</td>
</tr>
<tr>
<td>p-value</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
<td>0.97</td>
<td>0.43</td>
<td>0.26</td>
<td>0.27</td>
</tr>
<tr>
<td>Mean and Variance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average (u)</td>
<td>1.85</td>
<td>1.97</td>
<td>2.32</td>
<td>2.84</td>
<td>3.53</td>
<td>4.35</td>
<td>5.30</td>
<td>6.37</td>
</tr>
<tr>
<td>p-value</td>
<td>0.05</td>
<td>0.04</td>
<td>0.07</td>
<td>0.09</td>
<td>0.09</td>
<td>0.08</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>
RESULTS III: COMPLETE MARKETS

\[m_t^4 = \beta \left(I^{-1} \sum_{i=1}^{I} \frac{c_{i,t}}{c_{i,t-1}} \right)^{-\alpha} = \beta g_t^{-\alpha} \]

<table>
<thead>
<tr>
<th>RRA ((\alpha))</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"Vanilla" Complete Markets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average (u)</td>
<td>1.85</td>
<td>1.73</td>
<td>1.62</td>
<td>1.53</td>
<td>1.46</td>
<td>1.39</td>
<td>1.33</td>
<td>1.28</td>
</tr>
<tr>
<td>p-value ((H_0: u = 0))</td>
<td>0.05</td>
<td>0.04</td>
<td>0.06</td>
<td>0.07</td>
<td>0.04</td>
<td>0.04</td>
<td>0.06</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Results IV: CM + Limited Participation

<table>
<thead>
<tr>
<th>RRA (α)</th>
<th>0</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{t-1} \geq 10,000$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average u</td>
<td>5.18</td>
<td>4.89</td>
<td>3.97</td>
<td>3.07</td>
<td>2.09</td>
<td>0.51</td>
</tr>
<tr>
<td>p-value</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.47</td>
<td>0.83</td>
<td>0.93</td>
</tr>
<tr>
<td>$a_{t-1} \geq 20,000$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average u</td>
<td>5.18</td>
<td>4.82</td>
<td>3.65</td>
<td>2.02</td>
<td>-0.74</td>
<td>-5.80</td>
</tr>
<tr>
<td>p-value</td>
<td>0.03</td>
<td>0.00</td>
<td>0.05</td>
<td>0.80</td>
<td>0.97</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Results very sensitive to (1) threshold choice, (2) holding period and (3) choice of quarter
CONCLUSION

▶ Equity Premium can be explained with economically plausible values of RRA, if one admits a non-degenerate distribution of consumption growth rates in the economy.
▶ The lower moments capture most of the cross-sectional variations in this distribution, but its skewness seems to be essential.
▶ The assumption of complete consumption markets can be weakly reconciled with the equity premium, given a limited (enough) participation in asset markets.
Motivation

The Model

Results

Conclusion

Extras

Therefore, for high degrees of risk aversion, the observed equity premium lies within the upper tail of the model distribution. But for more plausible degrees of risk aversion, say $a_p \approx 5$, the implied equity premia are bounded above by 2.5 percent.

Fig. 4. Realizations of the cross-sectional skewness.

Table 3

<table>
<thead>
<tr>
<th>Properties of the third-order factor</th>
<th>Total Consumption Per capita Consumption</th>
<th>$E(m_3t)$</th>
<th>$\text{cov}(m_3t, R_{xt})$</th>
<th>$E(m_3t)$</th>
<th>$\text{cov}(m_3t, R_{xt})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base sample</td>
<td>/C0</td>
<td>16.1</td>
<td>0.4</td>
<td>22.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Stock and bondholders</td>
<td>/C0</td>
<td>17.0</td>
<td>0.1</td>
<td>25.8</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Note: This table reports the mean value of m_3t along with its covariance with R_{xt}: HAC standard errors shown in parentheses. The units are basis points at quarterly rates.
3rd Order Expansion with $\log(g_{i,t})$

- Recall: $m_t^1 = \beta I^{-1} \sum_{i=1}^{I} \left(\frac{c_{i,t}}{c_{i,t-1}} \right)^{-\alpha}$
- Taylor expansion in terms of $\log(g_{i,t}) = \log(c_{i,t}) - \log(c_{i,t-1})$

$$m_t^{\log} = \beta e^{-\alpha G_t} \left[1 + \frac{1}{2} \alpha^2 I^{-1} \sum_{i=1}^{I} (G_{i,t} - G_t)^2 - \frac{1}{6} \alpha^3 I^{-1} \sum_{i=1}^{I} (G_{i,t} - G_t)^3 \right]$$

- This SDF fails; authors do not report results.
Assume that idiosyncratic income shocks are multiplicative and iid lognormal. From Constantinides and Duffie (1996), m_t^{1} becomes:

$$m_t^{lnN} = \beta \left(\frac{\sum_{i=1}^{I} c_{i,t}}{\sum_{i=1}^{I} c_{i,t-1}} \right)^{-\alpha} \exp \left[\xi I^{-1} \sum_{i=1}^{I} \left(\log(g_{i,t}) - I^{-1} \sum_{i=1}^{I} \log(g_{i,t}) \right)^2 \right]$$

This SDF fails; moreover, u increases as RRA increases.