On Efficient Distribution with Private Information
by Atkeson and Lucas - RES 1992

Cecilia Parlatore Siritto

NYU

November 2009
The model

- Discrete time, infinite horizon $t = 0, 1, 2, \ldots$
- Single, non storable good
- Continuum of consumers (measure 1):
 - Preferences
 \[
 E \left(\sum_{t=0}^{\infty} (1 - \beta) \beta^t V(c_t) \theta_t \right)
 \]
 where $V' > 0$, $V'' < 0$
 - Idiosyncratic, serially independent, iid taste shock: $
 \theta_t \in \Theta = \{\theta_1, \ldots, \theta_n\}$, and
 \[
 \Pr(\theta_t = \theta_i) = \mu(\theta_i) \text{ for all } i \text{ and all } t
 \]
 - Idiosyncratic taste shocks are private information of the consumers.
Endowments

- Endowment economy: Fixed aggregate endowment y in every period.
- Each consumer enters the economy with a number $w \in D \subseteq \mathbb{R}$ which can be thought of as his initial entitlement to expected, discounted utility.
- Distribution of utilities:

$$\Pr (w \in A) = \psi (A) \text{ for all } A \subseteq D$$

Fraction of people in the economy with $w \in A$. $\psi \in M$, where M is the set of all probability measures on (D, \mathcal{D}) where \mathcal{D} are the Borel subsets of D.

Planner’s Objective

Use the minimum amount of resources (as constant, perpetual, endowment flow) to attain a certain distribution ψ given the information available.
A **reporting strategy** is a sequence $z = \{ z_t (\theta^t) \}^\infty_{t=0}$, $z_t : \Theta^{t+1} \to \Theta$

A **truthful** reporting strategy is a reporting strategy $z^* = \{ z^*_t (\theta^t) \}^\infty_{t=0}$ such that $z^*_t (\theta^t) = \theta_t$ for all t and all $\theta^t \in \Theta^{t+1}$

- Reporting history: $z^t = \{ z_0 (\theta_0) , \ldots , z_t (\theta_t) \}$
Plan

Let, \(u_t(w, z^t) = V(c_t(w, z^t)) \), \(u_t: D \times \Theta^{t+1} \rightarrow \mathbb{R} \)

A plan is a sequence \(u = \{u_t(w, z^t)\}_{t=0}^{\infty} \) such that

\[
\lim_{t \to \infty} \beta^t \sum_{s=0}^{\infty} \beta^s u_{t+s}(w, z^{t+s}) \theta_{t+s} = 0
\]

\(\Longrightarrow \) Discounted expected lifetime utility of plan \(u \) and reporting strategy \(z \)

\[
U(w, u, z) \equiv E \left(\sum_{t=0}^{\infty} (1 - \beta) \beta^t u(w, z^t) \theta_t \right)
\]
A plan \(u \) is an **allocation** if it satisfies

- **Truth Telling:** given \(u \) truth telling is optimal for the agents

\[
U(w, u, z^*) \geq U(w, u, z) \quad \text{for all } z \in Z \text{ and all } w \in D
\]

- **Promise keeping:** \(u \) delivers the expected discounted utility to each agent \(w \)

\[
U(w, u, z^*) = w \quad \text{for all } w
\]
Efficiency

An allocation is **efficient** if it attains a distribution ψ at the minimum cost (as constant, perpetual, endowment flow) of attaining ψ.
Planner’s Problem

Objective: Minimize constant stream of endowment to attain a welfare distribution ψ.

$$\min_u y$$

such that

- u is an allocation
- u attains ψ with resources y, i.e.,

$$\int_{D \times \Theta} C(u_t(w, \theta^t)) \, d\mu(\theta_t) \, d\psi(w) \leq y \text{ for all } t$$

where $C(u_t(w, z^t)) \equiv c_t(w, z^t)$ (inverse function of V)
Allocation rule

Let \(f_t (w_t(w_0, z^{t-1}), z_t) = u_t (w_0, z^t), g_t (w_t, z_t) = w_{t+1} \)

A sequence \(\sigma = \{ f_t, g_t \}_{t=0}^{\infty} \) is an allocation rule if it satisfies

(i) Promise keeping: for all \(w_t \) and all \(t \)

\[
\int_{\Theta} [(1 - \beta) f_t (w_t, \theta_t) \theta_t + \beta g_t (w_t, \theta_t)] d\mu = w_t
\]

(ii) Truth telling: for all \(z_t \in \Theta \), all \(w_t \in D \) and all \(t \)

\[
[(1 - \beta) f_t (w_t, \theta_t) \theta_t + \beta g_t (w_t, \theta_t)] d\mu \geq [(1 - \beta) f_t (w_t, z_t) \theta_t + \beta g_t (w_t, z_t)] d\mu
\]

(iii) Boundedness: \(\lim_{t \to \infty} \beta^t g_t (w_t(w_0, z^{*t-1}), z^*_t) = 0 \)
Planner’s Problem

\[
\min_{\sigma} y \\
\text{subject to:}
\]

- \(\sigma\) is an allocation rule
- The allocations rule \(\sigma\) attains \(\psi\) with resources \(y\)

\[
\int_{D \times \Theta} C(f_t(w_t, \theta)) \, d\mu(\theta) \, d\psi_t(w) \leq y \text{ for all } t
\]

where for all \(t\)

\[
\psi_{t+1}(w) = S_g(\psi_t)(w) \equiv \int_{D \times \Theta} I \{ w_t : g_t(w_t, \theta) = w \} \, d\mu \, d\psi_t
\]
Equivalence

Lemma 3.1 Let \(\psi \in M \) and suppose the allocation \(u \) attains \(\psi \) with resources \(y \). Then there is an allocation rule \(\sigma \) that attains \(\psi \) with resources \(y \).

Lemma 3.2 Let \(\psi \in M \). Suppose the allocation rule \(\sigma \) attains \(\psi \) with resources \(y \) and that \(u \) is the utility plan generated by \(\sigma \). Then \(u \) is an allocation, and \(u \) attains \(\psi \) with resources \(y \).

\[f_t (w_t(w_0, z^{t-1}), z_t) = u_t (w_0, z^t), g_t (w_t, z_t) = w_{t+1} \]
Planner’s Problem

\[\min_{\sigma} y \]

subject to:

- \(\sigma \) is an allocation rule
- The allocations rule \(\sigma \) attains \(\psi \) with resources \(y \)

\[
\max_t \left[\int_{D \times \Theta} C(f_t(w_t, \theta)) \, d\mu(\theta) \, d\psi_t(w) \right] \leq y
\]

where for all \(t \)

\[
\psi_{t+1}(w) = S_g(\psi_t)(w)
\]
Let $\varphi^* (\psi)$ be the minimum cost of attaining a distribution ψ.

\[
\varphi (\psi) = \inf_{f,g \in B} \max \left\{ \int_{D \times \Theta} C (f (w, \theta)) \, d\mu (\theta) \, d\psi (w), \varphi^* (S_g \psi) \right\}
\]

where B is the set of all functions f, g such that they satisfy promise keeping and truth telling.
Problem T

Let X be the set of all functions $\varphi : M \rightarrow \mathbb{R}_+ \cup \{+\infty\}$. Define the operator $T : X \rightarrow X$ as

$$(T \varphi)(\psi) = \inf_{f,g \in B} \max \left\{ \int_{D \times \Theta} C(f(w,\theta)) \ d\mu(\theta) \ d\psi(w), \varphi(S_g \psi) \right\}$$

Lemma 4.1 φ^* is a fixed point of T
Lemma 4.2 Suppose there are functions φ_a, φ_c and φ such that for all $\psi \in M$

- $\varphi_c < \varphi^* < \varphi_a$
- $\lim_{n \to \infty} T^n \varphi_a = \lim_{n \to \infty} T^n \varphi_c = \varphi$

Then, $\varphi = \varphi^*$.

Candidates:

- Autarky: $\varphi_a (\psi) = \int_D C(w) \, d\psi$
- Complete insurance: $\varphi_c (\psi) = \int_{D \times \Theta} C(u_c(w, \theta)) \, d\psi \, d\varphi$

where $u_c(w, \theta)$ is the period utility an agent w with shock θ would receive if the shock was observable.
Example: log utility

- $V(x) = \log(x)$, $C(u) = \exp(u)$
- $D = \mathbb{R}$
- Bounding functions
 - $\varphi_a(\psi) = \int_D \exp(w) d\psi$
 - $\varphi_c(\psi) = \alpha \int_D \exp(w) d\psi$ where $\alpha = \exp\{-E[\theta \log \theta]\}$

Result: f, g linear in w and independent of ψ

- $f(w, \theta) = r(\theta; \alpha) + w$
- $g(w, \theta) = h(\theta; \alpha) + w$

\implies Can choose r and h instead of f and g
Dynamics (log utility)

- Evolution of individual promised values:

\[w_t (w_0, \theta^{t-1}) = w_0 + \sum_{i=0}^{t-1} h(\theta_i; \alpha) \]

- Evolution of period utilities

\[u_t (w_0, \theta^t) = w_0 + \sum_{i=0}^{t-1} h(\theta_i; \alpha) + r(\theta_t) \]

\[\implies \text{Cross sectional variance} \]

\[Var [w_t (w_0, \theta^{t-1})] = Var (w_0) + tVar [h(\theta; \alpha)] \]

\[Var [u_t (w_0, \theta^t)] = Var (w_0) + tVar [h(\theta; \alpha)] + Var [r(\theta)] \]

The degree of inequality grows without bound when resources are efficiently allocated.