Policy Distortions and Aggregate Productivity with Heterogeneous Establishments

Diego Restuccia and Richard Rogerson

Review of Economic Dynamics, 2008

高 とう モン・ く ヨ と

Neoclassical growth model: commonly used to understand cross-country differences in per capita income.

Thesis: not only the level of factor accumulation that matters, but also how these factors are allocated across heterogeneous production units.

Approach: calibrate a version of neoclassical growth model that incorporate heterogeneous production units a la Hopenhayn (1992). Need for *idiosyncratic distortions*.

(本間) (本語) (本語) (二語)

<u>Household</u>: infinite-lived representative household, endowed with one unit of labor every period, and K_0 units of initial capital, maximizes

$$\sum_{t=0}^{\infty} \beta^t u(C_t)$$

subject to

$$\sum_{t=0}^{\infty} p_t (C_t + K_{t+1} - (1-\delta)K_t) = \sum_{t=0}^{\infty} p_t (r_t K_t + w_t N_t + \Pi_t - T_t)$$

(1日) (日) (日)

Incumbents: a finite number of firms indexed by TFP s, maximizing

$$\pi(s, au) = (1- au) s k^{lpha} n^{\gamma} - wn - rk - c_f$$

where $\alpha, \gamma \in (0, 1)$ and $0 < \alpha + \gamma < 1$

Establishment-level TFP s is assumed constant.

After production takes place, each establishment faces a constant probability of death equal to λ .

Value of the incumbent: $W(s,\tau) = \pi(s,\tau) \frac{1+R}{R+\lambda}$, where $R = \frac{1}{\beta} - 1$.

With NO idiosyncratic distortions: capital to labor ratio (k/n) are the same across plants.

Policy distortions: $\tau \in \{\tau_-, 0, \tau_+\}$, unknown at time of entry and remain fixed onwards.

Probability the establishment s face policy τ : $P(s, \tau)$

Assumption: government budget balance is achieved every period through taxation or redistribution T to the representative consumer.

<u>Entrants</u>: after paying a fixed cost of entry c_e , $s \in \{s_1, ..., s_{n_s}\}$ is drawn from a pdf h(s), i.i.d. across entrants.

Value of the entrant:

$$W_e = \sum_{(s,\tau)} \max_{\bar{x} \in \{0,1\}} \{\bar{x}(s,\tau)W(s,\tau)h(s)P(s,\tau) - c_e\}$$

Law of motion: $\mu'(s,\tau) = (1-\lambda)\mu(s,\tau) + \bar{x}(s,\tau)h(s)P(s,\tau)E$

<u>Invariant distribution:</u> $\mu(s, \tau) = \frac{\bar{x}(s, \tau)}{\lambda} h(s) P(s, \tau) E$

Focus: steady-state competitive equilibrium.

- (i) Consumer optimization;
- (ii) Plant optimization;
- (iii) Free entry: $W_e = 0$;
- (iv) Market clearing;
- (v) Government budget balance;
- (vi) μ is an invariant distribution.

(本間) (本語) (本語) (二語)

Growth model: standard procedures.

 $\alpha + \gamma = 0.85$

Benchmark economy: U.S. without distortions.

$$\frac{n_i}{n_j} = \left(\frac{s_i}{s_j}\right)^{\frac{1}{1-\gamma-\alpha}}$$

h(s) is chosen to match the distribution establishment per employment.

Idea: choose taxes and subsidies such that there is no effect on aggregate capital accumulation (isolate the distribution effect).

Two exercises:

- (1) τ is uncorrelated with s.
- (2) τ is positively correlated with s.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ - □ □

 τ_t Variable 0.20.30.10.4Relative Y 0.980.960.930.92Relative TFP 0.980.960.930.92Relative E 1.001.001.001.00 Y_s/Y 0.720.850.930.97S/Y0.050.080.090.100.060.090.100.11 τ_s

Table 3: Effects of Idiosyncratic Distortions - Uncorrelated Case

・ロト ・回ト ・ヨト ・ヨト

Table 4: Relative TFP – Uncorrelated Distortions

Fraction of Establishments	$ au_t$			
Taxed (%):	0.1	0.2	0.3	0.4
90	0.92	0.84	0.78	0.74
80	0.95	0.89	0.84	0.81
60	0.98	0.94	0.91	0.89
50	0.98	0.96	0.93	0.92
40	0.99	0.97	0.95	0.94
20	1.00	0.99	0.98	0.97
10	1.00	0.99	0.99	0.99

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Table 5: Effects of Idiosyncratic Distortions - Correlated Case

	$ au_t$					
Variable	0.1	0.2	0.3	0.4		
Relative Y	0.90	0.80	0.73	0.69		
Relative TFP	0.90	0.80	0.73	0.69		
Relative E	1.00	1.00	1.00	1.00		
Y_s/Y	0.42	0.67	0.83	0.92		
S/Y	0.17	0.32	0.43	0.49		
τ_s	0.40	0.48	0.52	0.53		

Low TFP firms receive a subsidy; high TFP firms are taxed.

・ロン ・回 と ・ ヨ と ・ ヨ と

Table 6: Relative TFP - Correlated Distortions

Fraction of Establishments	$ au_t$			
Taxed (%):	0.1	0.2	0.3	0.4
90	0.81	0.66	0.56	0.51
80	0.84	0.70	0.62	0.57
60	0.88	0.77	0.69	0.65
50	0.90	0.80	0.73	0.69
40	0.92	0.82	0.76	0.72
20	0.95	0.89	0.84	0.81
10	0.97	0.92	0.88	0.86