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What do we mean by Normalization?

Restricting the parameter space to achieve identification

Example:
» toy model:
Y = 0¢& (1)
with e, ~ N(0, 1)
Log-likelihood is given by:
T
logf(y; o) = —T/2log(27) — T/2log(0?) = > ¥7/(20%) (2)
=1

Here the ’sensible’ normalization would be o > 0

» Note: this paper only deals with normalization issues in
likelihood-based inference



What is the Problem?

Picking a certain normalization not only amounts to ’picking’ a point
estimate, but also what area of the parameter space is used to compute
confidence intervals.
A poor normalization can lead to multimodal distributions,
disjoint confidence intervals, and very misleading
characterizations of the true statistical uncertainty
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Some Definitions

Let § € R¥ be the parameter vector of interest and f(y; §) the
likelihood function

» two parameter vectors f; and 6 are observationally equivalent if

f;01) = f(y; 02)¥y 3)

» the model is said to be locally identified at 6 if there exists an
open neighborhood around 6y containing no other value of 6 that
is observationally equivalent to g



The Identification Principle

There will usually be loci along which the model is locally
unidentified because the information matrix is singular or the
likelihood is 0 (o = 0 in the previous example). The following
identification principle rules out ’bad’ normalizations:

The set of admissible parameter values should be chosen in such a
way that the loci along which the model is locally unidentified or the
likelihood is O form the boundary of this set.



Example 1: Mixture of Normals

f e 1, 12, p) = \/Z—ew <

— (v 1)2) l—p
! +
T 2

exp (—(yt - uz)z)
V2T
Two possible normalization schemes have appeared in the literature:
» p>0.5

2
> g >

4

Example: 50 observations, p; = 1,up = —1l and p = 0.8
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FIGURE 2 Performance of estimators with sample size on the horizontal axis. Top row: average
squared difference between posterior mean and true value for indicated parameter when normalized
by p > iz (solid line) or by p>.5 (dashed line). First column: performance for estimate of
sz second column: performance for estimate of sz third column: performance for estimate of
#. Second row: ninety-percent coverage probabilities for indicated when lized by
1> g (solid line) or by p> 5 (dashed line); dotied line gives nominal 90% goal. Third row:
average squared difference between posterior mean and true value for indicated parameter when
normalized by ju > iz for three different priors. Solid line: prior variance =5 dashed line: prior
vairance = 100; dotted line: truncated Normal prior.
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Example 2: A Structural VAR model

p

B()yt =k+ ZB]ytff + u;
j=1

with u, ~ N(0, D?), D diagonal

6]

1

1 -3 0
B() = 1 - —h
0 O

(6)
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FIGURE 4 Top row: impulse-response function and 90% confidence interval for the effect of a
one standard deviation increase in quantity demanded on the price k periods later under the
f-normalization (left panel) and g-normalization (second panel). Second row: posterior density for
the k = 0 (left panel) and k = 1 (right panel) values of the impulse-response function plotted in the
upper left panel. Third row: posterior density for the k = 0 and k = 1 values of the impulse-response
function plotted in the upper right panel.
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Conclusion

» careless normalization can lead to misleading statistical inference
» check different normalizations

» algorithm for structural VARs is available (Waggoner &Zha
2003)




