Pricing and Liquidity with Sticky Trading Plans

Bruno Biais, Johan Hombert, Pierre-Olivier Weill
Presented by Shengxing Zhang

November 13, 2012
- continuous time
- Walrasian market for an asset
- asset supply: \(s \in (0, 1) \)
- a continuum of investors, of total measure 1
- flow utility depends on preference type \(\theta \) and asset holding \(q \).
 \[\theta \in \{l, h\}, \ q \in \mathbb{R}_+, \ v : \{l, h\} \times \mathbb{R}_+ \rightarrow \mathbb{R} \]
- investors have deep pocket in cash
liquidity shocks and trading opportunities

- at \(t = 0^- \), all investors hold \(s \) and have preference type \(h \)
- at \(t = 0 \), the preference type of all investors switches to \(l \)
- two idiosyncratic random processes during recovery
 - preference type recovers with Poisson rate \(\gamma \)
 - update trading plan with Poisson rate \(\rho \)
preference

\[\nu : \{h, l\} \times \mathbb{R}_+ \rightarrow \mathbb{R}_+ \]
\[(\theta, q) \mapsto \nu(\theta, q) \]

\[\nu(h, q) = \begin{cases}
q, & \forall q \in [0, 1] \\
1, & \forall q \in (1, \infty]
\end{cases} \]

\[\nu(l, q) = \begin{cases}
q - \delta q^{1+\sigma} / (1 + \sigma), & \forall q \in [0, 1] \\
1 - \delta / (1 + \sigma), & \forall q \in (1, \infty]
\end{cases} \]

- \(\nu_q(h, q) > \nu_q(l, q), \forall q \in (0, 1) \):
 l type will be the marginal investor on transition path

- \(\nu(l, q) \) is strictly concave for \(q \in [0, 1] \):
 asset holding for marginal investors to change smoothly

- \(\nu_q(h, q) = \nu_q(l, q) = 0, \forall q \geq 1 \):
 investors hold at most 1 unit in SS

- \(\nu_q(h, 0) = \nu_q(l, 0) = 1 \)
definition of trading plan

trading plan updated at t is $\left[t, \infty \right) \times \Omega \rightarrow \mathbb{R}_+$

$$(u, \omega) \mapsto q_{t,u}(\omega)$$

- u: the moment to purchase $q_{t,u}$ such that

 - the stochastic process $(t, \omega) \mapsto q_{t,u}(\omega)$ is \mathcal{F}_t measurable, where $\{\mathcal{F}_t\}_{t \geq 0}$ is the filtration generated by the history of trading opportunities and preference shocks

the information at t can be reduced to: liquidity state θ_t
additional assumption

- the function $u \mapsto q_{t,u}(\omega)$ has bounded variations
- market price $p : t \mapsto p_t$ is continuously differentiable in the transition dynamics
investor’s problem

\[
\max_{q_t, u \geq 0, \forall u \geq t} \int_t^\infty e^{-r(u-t)} e^{-\rho(u-t)} \left\{ \mathbb{E}_t [v(\theta_u, q_{t,u})] \, du - p_t \, dq_{t,u} \right\}
\]

- \(e^{-r(u-t)} \): discounting flow utility at \(u \)
- \(e^{-\rho(u-t)} \): probability that the plan survives up until \(u \)
- \(\mathbb{E}_t [v(\theta_u, q_{t,u})] \): expectation conditional on information at \(t \)

Integration by part leads to

\[
\max_{q_t, u \geq 0, \forall u \geq t} \int_t^\infty e^{-r(u-t)} e^{-\rho(u-t)} \left\{ \mathbb{E}_t [v(\theta_u, q_{tu})] - \xi_u \, q_{t,u} \right\} \, du
\]

where \(\xi_u = r p_u - \dot{p}_u \)

by point-wise optimization

\[
\mathbb{E}_t [v_q(\theta_u, q_{t,u})] = \xi_u
\]
market clearing condition at u

$$s = \int_0^u \rho e^{-\rho(u-t)} \left\{ (1 - \mu_{ht}) q_{t,u}(\{\theta_t = l\}) + \mu_{ht} q_{t,u}(\{\theta_t = h\}) \right\} dt$$

- $q_{t,u}(\{\theta_t = \theta\})$: trading plans made at t
- $\rho e^{-\rho(u-t)} dt$: measure of investors with trading plan $q_{t,\theta}(\theta_t)$
- $\mu_{ht} = 1 - e^{\gamma t}$: fraction of h type at t
The equilibrium is a price path $p : t \mapsto p_t$, and a collection of trading plans $\{ q_{t,.}(\theta_t) : u \mapsto q_{t,u}(\theta_t) \}_{\forall t \geq 0, \theta \in I, h}$ such that

- given the price path, trading plan $q_{t,.}(\theta_t)$ solves the problem of investors of θ_t updating plan at t
- market clears at any t
trading dynamics
\[\mathbb{E}_t [v_q(\theta_u, q)] = \xi_u \]

- \(\mathbb{E}_t \{ v_q(\theta_u, q) | \theta_t = l \} = q - \delta e^{-\gamma(u-t)} q^\sigma, \forall q \in [0,1] \)
 where \(e^{-\gamma(u-t)} \) is the probability to remain low type
- \(v_q(\theta_u = l, q) = 1 - \delta q^\sigma, \forall q \in [0,1] \)
- \(v_q(\theta_u = h, q) = 1, \forall q \in [0,1] \)
characterization

\[\mathbb{E}_t [\nu_q(\theta_u, q)] = \xi_u \]

- \(\mathbb{E}_t \{ \nu_q(\theta_u, q) | \theta_t = l \} = q - \delta e^{-\gamma(u-t)} q^\sigma, \ \forall q \in [0, 1] \) where \(e^{-\gamma(u-t)} \) is the probability to remain low type
- \(\nu_q(\theta_u = l, q) = 1 - \delta q^\sigma, \ \forall q \in [0, 1] \)
- \(\nu_q(\theta_u = h, q) = 1, \ \forall q \in [0, 1] \)

\(\Rightarrow \) \(\nu'(\theta_u = h, q) = 1 > \mathbb{E}_t \{ \nu'(\theta_u, q) | \theta_t = l \} > \nu'(\theta_u = l, q) \)
\[E_t [v_q(\theta_u, q)] = \xi_u \]

- \[E_t\{v_q(\theta_u, q)|\theta_t = l\} = q - \delta e^{-\gamma(u-t)}q^\sigma, \ \forall q \in [0, 1] \]
 where \(e^{-\gamma(u-t)} \) is the probability to remain low type

- \[v_q(\theta_u = l, q) = 1 - \delta q^\sigma, \ \forall q \in [0, 1] \]

- \[v_q(\theta_u = h, q) = 1, \ \forall q \in [0, 1] \]

\[v'(\theta_u = h, q) = 1 > E_t\{v'(\theta_u, q)|\theta_t = l\} > v'(\theta_u = l, q) \]

\[q_{u,u}(\theta_u = h) > q_{t,u}(\theta_t = l) > q_{u,u}(\theta_u = l) \]
characterization

\[E_t [v_q(\theta_u, q)] = \xi_u \]

- \(E_t \{ v_q(\theta_u, q) | \theta_t = l \} = q - \delta e^{-\gamma(u-t)} q^\sigma \), \(\forall q \in [0, 1] \)
 where \(e^{-\gamma(u-t)} \) is the probability to remain low type
- \(v_q(\theta_u = l, q) = 1 - \delta q^\sigma \), \(\forall q \in [0, 1] \)
- \(v_q(\theta_u = h, q) = 1 \), \(\forall q \in [0, 1] \)

\[\Rightarrow v'(\theta_u = h, q) = 1 > E_t \{ v'(\theta_u, q) | \theta_t = l \} > v'(\theta_u = l, q) \]

\[\Rightarrow q_{u,u}(\theta_u = h) > q_{t,u}(\theta_t = l) > q_{u,u}(\theta_u = l) \]
- \(q_{t,u}(\theta_t = l) > q_{u,u}(\theta_u = l) \) and \(E_t \{ v_q(\theta_u, q) | \theta_t = l \} \)
 increasing in \(u \): *round-trip trading*
characterization

\[\mathbb{E}_t [v_q(\theta_u, q)] = \xi_u \]

- \[\mathbb{E}_t \{ v_q(\theta_u, q) | \theta_t = l \} = q - \delta e^{-\gamma(u-t)} q^\sigma, \quad \forall q \in [0, 1] \]
where \(e^{-\gamma(u-t)} \) is the probability to remain low type
- \[v_q(\theta_u = l, q) = 1 - \delta q^\sigma, \quad \forall q \in [0, 1] \]
- \[v_q(\theta_u = h, q) = 1, \quad \forall q \in [0, 1] \]
\[\Rightarrow v'(\theta_u = h, q) = 1 > \mathbb{E}_t \{ v'(\theta_u, q) | \theta_t = l \} > v'(\theta_u = l, q) \]
\[\Rightarrow q_{u,u}(\theta_u = h) > q_{t,u}(\theta_t = l) > q_{u,u}(\theta_u = l) \]
- \[q_{t,u}(\theta_t = l) > q_{u,u}(\theta_u = l) \]
and \(\mathbb{E}_t \{ v_q(\theta_u, q) | \theta_t = l \} \) increasing in \(u \): *round-trip trading*
- \[q_{u,u}(\theta_u = h) > q_{t,u}(\theta_t = l) : \text{delay in recovery} \]
trade volume

- round-trip trades raise trade volume
- infrequent updating reduces trade volume
- as $\rho \to \infty$, trade volume may be strictly higher than that of continuous trading
delay in trade

- recovery takes longer
- welfare lower than that in continuous trading
- constrained efficient: endogenous intermediation by trading low type
- results depend on the curvature of utility of l type
price dynamics

- if $s < \sigma/(\sigma + 1)$, prices are lower under sticky trading plans
- if otherwise, price may be hump-shaped and may be higher sometimes
instrument of implementation

- tools: limit order, market order, trigger buy/sell order
- trading plan implementable with a rich set of instrument
- if limited: allocation point-wise optimization may not be feasible